A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel

A modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2021-10, Vol.60 (10), p.587-601
Hauptverfasser: Lavoratti, Thales Carl, Heitkam, Sascha, Hampel, Uwe, Lecrivain, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 601
container_issue 10
container_start_page 587
container_title Rheologica acta
container_volume 60
creator Lavoratti, Thales Carl
Heitkam, Sascha
Hampel, Uwe
Lecrivain, Gregory
description A modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with wide range of gas fraction. The foam motion, composed of about hundred two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4 to 0.99, that is below and beyond the jamming transition. Simulations are preformed near the quasi-static limit, indicating that the bubble rearrangement in the obstructed channel is primarily driven by the soft collisions and not by the hydrodynamics. Foam compression and relaxation upstream and downstream of the obstacle are reproduced and qualitatively match previous experimental and numerical observations. Striking dynamics, such as bubbles being squeezed by their neighbors in negative flow direction, are also revealed at intermediate gas fractions.
doi_str_mv 10.1007/s00397-021-01288-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571046395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571046395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a6958623e32df1e70361d3b3ce0e4c20cf89e8c01920e5d969e3acff476f55023</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0vTjuCx-wYIXPYeYTrTSJjVJWfbfW63gzdMwzPu8DA8hlxyuOUB1kwBkUzEQnAEXdc0OR2TFC6kYV6I-Jqv5rlihOD8lZyl9APCqrMSK-A21YRinbHIXvOnpgPk9tDQHmrph6k1GOgQfGDW-pWPoD6zt0ogxIc37MC8D-rSgLpghUdeHfeffaOdpeE05TjZjS-278R77c3LiTJ_w4neuycvd7fP2ge2e7h-3mx2zspSZmbJRdSkkStE6jhXIkrfyVVoELKwA6-oGawu8EYCqbcoGpbHOFVXplAIh1-Rq6R1j-JwwZf0Rpjg_mbRQFYeilI2aU2JJ2RhSiuj0GLvBxIPmoL-96sWrnr3qH6_6MENygdIc9m8Y_6r_ob4AhkR9Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571046395</pqid></control><display><type>article</type><title>A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel</title><source>SpringerLink Journals</source><creator>Lavoratti, Thales Carl ; Heitkam, Sascha ; Hampel, Uwe ; Lecrivain, Gregory</creator><creatorcontrib>Lavoratti, Thales Carl ; Heitkam, Sascha ; Hampel, Uwe ; Lecrivain, Gregory</creatorcontrib><description>A modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with wide range of gas fraction. The foam motion, composed of about hundred two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4 to 0.99, that is below and beyond the jamming transition. Simulations are preformed near the quasi-static limit, indicating that the bubble rearrangement in the obstructed channel is primarily driven by the soft collisions and not by the hydrodynamics. Foam compression and relaxation upstream and downstream of the obstacle are reproduced and qualitatively match previous experimental and numerical observations. Striking dynamics, such as bubbles being squeezed by their neighbors in negative flow direction, are also revealed at intermediate gas fractions.</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-021-01288-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bubbles ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Computational fluid dynamics ; Fluid flow ; Foams ; Food Science ; Formability ; Hydrodynamics ; Jamming ; Materials Science ; Mathematical models ; Measurement techniques ; Mechanical Engineering ; Methods ; Original Contribution ; Polymer Sciences ; Simulation ; Soft and Granular Matter ; Two dimensional analysis ; Two dimensional flow ; Two dimensional models</subject><ispartof>Rheologica acta, 2021-10, Vol.60 (10), p.587-601</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a6958623e32df1e70361d3b3ce0e4c20cf89e8c01920e5d969e3acff476f55023</citedby><cites>FETCH-LOGICAL-c363t-a6958623e32df1e70361d3b3ce0e4c20cf89e8c01920e5d969e3acff476f55023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-021-01288-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-021-01288-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Lavoratti, Thales Carl</creatorcontrib><creatorcontrib>Heitkam, Sascha</creatorcontrib><creatorcontrib>Hampel, Uwe</creatorcontrib><creatorcontrib>Lecrivain, Gregory</creatorcontrib><title>A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>A modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with wide range of gas fraction. The foam motion, composed of about hundred two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4 to 0.99, that is below and beyond the jamming transition. Simulations are preformed near the quasi-static limit, indicating that the bubble rearrangement in the obstructed channel is primarily driven by the soft collisions and not by the hydrodynamics. Foam compression and relaxation upstream and downstream of the obstacle are reproduced and qualitatively match previous experimental and numerical observations. Striking dynamics, such as bubbles being squeezed by their neighbors in negative flow direction, are also revealed at intermediate gas fractions.</description><subject>Bubbles</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Foams</subject><subject>Food Science</subject><subject>Formability</subject><subject>Hydrodynamics</subject><subject>Jamming</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Measurement techniques</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0vTjuCx-wYIXPYeYTrTSJjVJWfbfW63gzdMwzPu8DA8hlxyuOUB1kwBkUzEQnAEXdc0OR2TFC6kYV6I-Jqv5rlihOD8lZyl9APCqrMSK-A21YRinbHIXvOnpgPk9tDQHmrph6k1GOgQfGDW-pWPoD6zt0ogxIc37MC8D-rSgLpghUdeHfeffaOdpeE05TjZjS-278R77c3LiTJ_w4neuycvd7fP2ge2e7h-3mx2zspSZmbJRdSkkStE6jhXIkrfyVVoELKwA6-oGawu8EYCqbcoGpbHOFVXplAIh1-Rq6R1j-JwwZf0Rpjg_mbRQFYeilI2aU2JJ2RhSiuj0GLvBxIPmoL-96sWrnr3qH6_6MENygdIc9m8Y_6r_ob4AhkR9Tg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lavoratti, Thales Carl</creator><creator>Heitkam, Sascha</creator><creator>Hampel, Uwe</creator><creator>Lecrivain, Gregory</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211001</creationdate><title>A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel</title><author>Lavoratti, Thales Carl ; Heitkam, Sascha ; Hampel, Uwe ; Lecrivain, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a6958623e32df1e70361d3b3ce0e4c20cf89e8c01920e5d969e3acff476f55023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bubbles</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Foams</topic><topic>Food Science</topic><topic>Formability</topic><topic>Hydrodynamics</topic><topic>Jamming</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Measurement techniques</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavoratti, Thales Carl</creatorcontrib><creatorcontrib>Heitkam, Sascha</creatorcontrib><creatorcontrib>Hampel, Uwe</creatorcontrib><creatorcontrib>Lecrivain, Gregory</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavoratti, Thales Carl</au><au>Heitkam, Sascha</au><au>Hampel, Uwe</au><au>Lecrivain, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>60</volume><issue>10</issue><spage>587</spage><epage>601</epage><pages>587-601</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>A modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with wide range of gas fraction. The foam motion, composed of about hundred two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4 to 0.99, that is below and beyond the jamming transition. Simulations are preformed near the quasi-static limit, indicating that the bubble rearrangement in the obstructed channel is primarily driven by the soft collisions and not by the hydrodynamics. Foam compression and relaxation upstream and downstream of the obstacle are reproduced and qualitatively match previous experimental and numerical observations. Striking dynamics, such as bubbles being squeezed by their neighbors in negative flow direction, are also revealed at intermediate gas fractions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-021-01288-y</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2021-10, Vol.60 (10), p.587-601
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2571046395
source SpringerLink Journals
subjects Bubbles
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Fluids and Microfluidics
Computational fluid dynamics
Fluid flow
Foams
Food Science
Formability
Hydrodynamics
Jamming
Materials Science
Mathematical models
Measurement techniques
Mechanical Engineering
Methods
Original Contribution
Polymer Sciences
Simulation
Soft and Granular Matter
Two dimensional analysis
Two dimensional flow
Two dimensional models
title A computational method to simulate mono- and poly-disperse two-dimensional foams flowing in obstructed channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20method%20to%20simulate%20mono-%20and%20poly-disperse%20two-dimensional%20foams%20flowing%20in%20obstructed%20channel&rft.jtitle=Rheologica%20acta&rft.au=Lavoratti,%20Thales%20Carl&rft.date=2021-10-01&rft.volume=60&rft.issue=10&rft.spage=587&rft.epage=601&rft.pages=587-601&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-021-01288-y&rft_dat=%3Cproquest_cross%3E2571046395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571046395&rft_id=info:pmid/&rfr_iscdi=true