Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates

The present work reports data for TiO 2 thin films on borosilicate glass and (001) single-crystal TiO 2 , annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-03, Vol.55 (9), p.3774-3794
Hauptverfasser: Kabir, I. I., Sheppard, L. R., Shamiri, R., Koshy, P., Liu, R., Joe, W., Le, A., Lu, X., Chen, W.-F., Sorrell, C. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3794
container_issue 9
container_start_page 3774
container_title Journal of materials science
container_volume 55
creator Kabir, I. I.
Sheppard, L. R.
Shamiri, R.
Koshy, P.
Liu, R.
Joe, W.
Le, A.
Lu, X.
Chen, W.-F.
Sorrell, C. C.
description The present work reports data for TiO 2 thin films on borosilicate glass and (001) single-crystal TiO 2 , annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate determined the TiO 2 polymorph that formed, while the annealing temperature and boron contamination from the substrate determined most of the associated properties. The films on glass substrates were amorphous following annealing at 200 °C but were anatase at higher temperatures. The films on rutile exhibited epitaxial growth at all annealing temperatures. Annealing caused diffusion of glass component elements into the films and counterdiffusion of Ti into the glass substrates. Since aqueous MB testing caused decreased glass ion concentrations, the diffusion mechanism is via the grain boundaries. Volatilization of boron occurred during annealing at 550 °C. The morphological features dominated the optical properties; the anatase films exhibited high transmissions and low reflectances, while the rutile films exhibited the converse. The band gap decreased slightly with increasing annealing temperatures, reflecting increasing crystallinity. The refractive indices showed an anomalous trend of decrease with increasing annealing temperature and associated crystallinity; this is attributed to the effects of boron volatilization and associated air-filled pore formation. Although the anatase films outperformed the rutile films, the effect of annealing temperature is likely to have been dominant in that it determined the relative extents of crystallinity, grain size, RMS roughness, optical indirect band gap, and oxygen vacancy concentration.
doi_str_mv 10.1007/s10853-019-04282-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571043553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329105437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c0c16123f81886272d1d283c73cba7f9b2c362d7b1d9939a5a0a36c574707d33</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GZSdO0R1n8BwsLsveQpq1m6bZrkh789kZX8OZphsfvvWEeY9cItwig7yJCpaQArAUUVJHAE7ZApaUoKpCnbAFAJKgo8ZxdxLgDAKUJF-x1NY3J7v1ok59GPvV86zfE07sfee-HfeTxkFc32dS1PBPNFKboB--ywO3Y8jAnP3Q8zk1MIYvxkp31dojd1e9csu3jw3b1LNabp5fV_Vo4WegkHDgskWRfYVWVpKnFlirptHSN1X3dkJMltbrBtq5lbZUFK0undKFBt1Iu2c0x9hCmj7mLyeymOYz5oiGlEQqp1P-UpBpBFVJnio6Uy8_F0PXmEPzehk-DYL4LNseCTS7Y_BRsMJvk0RQzPL514S_6H9cX0EN8Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329105437</pqid></control><display><type>article</type><title>Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates</title><source>SpringerLink</source><creator>Kabir, I. I. ; Sheppard, L. R. ; Shamiri, R. ; Koshy, P. ; Liu, R. ; Joe, W. ; Le, A. ; Lu, X. ; Chen, W.-F. ; Sorrell, C. C.</creator><creatorcontrib>Kabir, I. I. ; Sheppard, L. R. ; Shamiri, R. ; Koshy, P. ; Liu, R. ; Joe, W. ; Le, A. ; Lu, X. ; Chen, W.-F. ; Sorrell, C. C.</creatorcontrib><description>The present work reports data for TiO 2 thin films on borosilicate glass and (001) single-crystal TiO 2 , annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate determined the TiO 2 polymorph that formed, while the annealing temperature and boron contamination from the substrate determined most of the associated properties. The films on glass substrates were amorphous following annealing at 200 °C but were anatase at higher temperatures. The films on rutile exhibited epitaxial growth at all annealing temperatures. Annealing caused diffusion of glass component elements into the films and counterdiffusion of Ti into the glass substrates. Since aqueous MB testing caused decreased glass ion concentrations, the diffusion mechanism is via the grain boundaries. Volatilization of boron occurred during annealing at 550 °C. The morphological features dominated the optical properties; the anatase films exhibited high transmissions and low reflectances, while the rutile films exhibited the converse. The band gap decreased slightly with increasing annealing temperatures, reflecting increasing crystallinity. The refractive indices showed an anomalous trend of decrease with increasing annealing temperature and associated crystallinity; this is attributed to the effects of boron volatilization and associated air-filled pore formation. Although the anatase films outperformed the rutile films, the effect of annealing temperature is likely to have been dominant in that it determined the relative extents of crystallinity, grain size, RMS roughness, optical indirect band gap, and oxygen vacancy concentration.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-04282-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Annealing ; Boron ; Borosilicate glass ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Contamination ; Counterdiffusion ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Ellipsometry ; Energy gap ; Epitaxial growth ; Glass substrates ; Grain boundaries ; Grain size ; Materials Science ; Methylene blue ; Optical properties ; Polymer Sciences ; Pore formation ; Refractivity ; Rutile ; Single crystals ; Solid Mechanics ; Thin films ; Titanium dioxide ; Vaporization ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science, 2020-03, Vol.55 (9), p.3774-3794</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c0c16123f81886272d1d283c73cba7f9b2c362d7b1d9939a5a0a36c574707d33</citedby><cites>FETCH-LOGICAL-c347t-c0c16123f81886272d1d283c73cba7f9b2c362d7b1d9939a5a0a36c574707d33</cites><orcidid>0000-0001-5548-4936 ; 0000-0002-7346-3271 ; 0000-0003-3549-6969 ; 0000-0001-6318-1855 ; 0000-0003-0282-5535 ; 0000-0002-5727-8332 ; 0000-0002-0192-2424 ; 0000-0002-9395-0771 ; 0000-0002-2917-3875 ; 0000-0003-2823-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-04282-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-04282-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kabir, I. I.</creatorcontrib><creatorcontrib>Sheppard, L. R.</creatorcontrib><creatorcontrib>Shamiri, R.</creatorcontrib><creatorcontrib>Koshy, P.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Joe, W.</creatorcontrib><creatorcontrib>Le, A.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Chen, W.-F.</creatorcontrib><creatorcontrib>Sorrell, C. C.</creatorcontrib><title>Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The present work reports data for TiO 2 thin films on borosilicate glass and (001) single-crystal TiO 2 , annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate determined the TiO 2 polymorph that formed, while the annealing temperature and boron contamination from the substrate determined most of the associated properties. The films on glass substrates were amorphous following annealing at 200 °C but were anatase at higher temperatures. The films on rutile exhibited epitaxial growth at all annealing temperatures. Annealing caused diffusion of glass component elements into the films and counterdiffusion of Ti into the glass substrates. Since aqueous MB testing caused decreased glass ion concentrations, the diffusion mechanism is via the grain boundaries. Volatilization of boron occurred during annealing at 550 °C. The morphological features dominated the optical properties; the anatase films exhibited high transmissions and low reflectances, while the rutile films exhibited the converse. The band gap decreased slightly with increasing annealing temperatures, reflecting increasing crystallinity. The refractive indices showed an anomalous trend of decrease with increasing annealing temperature and associated crystallinity; this is attributed to the effects of boron volatilization and associated air-filled pore formation. Although the anatase films outperformed the rutile films, the effect of annealing temperature is likely to have been dominant in that it determined the relative extents of crystallinity, grain size, RMS roughness, optical indirect band gap, and oxygen vacancy concentration.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Boron</subject><subject>Borosilicate glass</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Contamination</subject><subject>Counterdiffusion</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Ellipsometry</subject><subject>Energy gap</subject><subject>Epitaxial growth</subject><subject>Glass substrates</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Optical properties</subject><subject>Polymer Sciences</subject><subject>Pore formation</subject><subject>Refractivity</subject><subject>Rutile</subject><subject>Single crystals</subject><subject>Solid Mechanics</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>Vaporization</subject><subject>X ray photoelectron spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9GZSdO0R1n8BwsLsveQpq1m6bZrkh789kZX8OZphsfvvWEeY9cItwig7yJCpaQArAUUVJHAE7ZApaUoKpCnbAFAJKgo8ZxdxLgDAKUJF-x1NY3J7v1ok59GPvV86zfE07sfee-HfeTxkFc32dS1PBPNFKboB--ywO3Y8jAnP3Q8zk1MIYvxkp31dojd1e9csu3jw3b1LNabp5fV_Vo4WegkHDgskWRfYVWVpKnFlirptHSN1X3dkJMltbrBtq5lbZUFK0undKFBt1Iu2c0x9hCmj7mLyeymOYz5oiGlEQqp1P-UpBpBFVJnio6Uy8_F0PXmEPzehk-DYL4LNseCTS7Y_BRsMJvk0RQzPL514S_6H9cX0EN8Ow</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Kabir, I. I.</creator><creator>Sheppard, L. R.</creator><creator>Shamiri, R.</creator><creator>Koshy, P.</creator><creator>Liu, R.</creator><creator>Joe, W.</creator><creator>Le, A.</creator><creator>Lu, X.</creator><creator>Chen, W.-F.</creator><creator>Sorrell, C. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5548-4936</orcidid><orcidid>https://orcid.org/0000-0002-7346-3271</orcidid><orcidid>https://orcid.org/0000-0003-3549-6969</orcidid><orcidid>https://orcid.org/0000-0001-6318-1855</orcidid><orcidid>https://orcid.org/0000-0003-0282-5535</orcidid><orcidid>https://orcid.org/0000-0002-5727-8332</orcidid><orcidid>https://orcid.org/0000-0002-0192-2424</orcidid><orcidid>https://orcid.org/0000-0002-9395-0771</orcidid><orcidid>https://orcid.org/0000-0002-2917-3875</orcidid><orcidid>https://orcid.org/0000-0003-2823-5250</orcidid></search><sort><creationdate>20200301</creationdate><title>Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates</title><author>Kabir, I. I. ; Sheppard, L. R. ; Shamiri, R. ; Koshy, P. ; Liu, R. ; Joe, W. ; Le, A. ; Lu, X. ; Chen, W.-F. ; Sorrell, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c0c16123f81886272d1d283c73cba7f9b2c362d7b1d9939a5a0a36c574707d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Boron</topic><topic>Borosilicate glass</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Contamination</topic><topic>Counterdiffusion</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Ellipsometry</topic><topic>Energy gap</topic><topic>Epitaxial growth</topic><topic>Glass substrates</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Optical properties</topic><topic>Polymer Sciences</topic><topic>Pore formation</topic><topic>Refractivity</topic><topic>Rutile</topic><topic>Single crystals</topic><topic>Solid Mechanics</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>Vaporization</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabir, I. I.</creatorcontrib><creatorcontrib>Sheppard, L. R.</creatorcontrib><creatorcontrib>Shamiri, R.</creatorcontrib><creatorcontrib>Koshy, P.</creatorcontrib><creatorcontrib>Liu, R.</creatorcontrib><creatorcontrib>Joe, W.</creatorcontrib><creatorcontrib>Le, A.</creatorcontrib><creatorcontrib>Lu, X.</creatorcontrib><creatorcontrib>Chen, W.-F.</creatorcontrib><creatorcontrib>Sorrell, C. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabir, I. I.</au><au>Sheppard, L. R.</au><au>Shamiri, R.</au><au>Koshy, P.</au><au>Liu, R.</au><au>Joe, W.</au><au>Le, A.</au><au>Lu, X.</au><au>Chen, W.-F.</au><au>Sorrell, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>9</issue><spage>3774</spage><epage>3794</epage><pages>3774-3794</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The present work reports data for TiO 2 thin films on borosilicate glass and (001) single-crystal TiO 2 , annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate determined the TiO 2 polymorph that formed, while the annealing temperature and boron contamination from the substrate determined most of the associated properties. The films on glass substrates were amorphous following annealing at 200 °C but were anatase at higher temperatures. The films on rutile exhibited epitaxial growth at all annealing temperatures. Annealing caused diffusion of glass component elements into the films and counterdiffusion of Ti into the glass substrates. Since aqueous MB testing caused decreased glass ion concentrations, the diffusion mechanism is via the grain boundaries. Volatilization of boron occurred during annealing at 550 °C. The morphological features dominated the optical properties; the anatase films exhibited high transmissions and low reflectances, while the rutile films exhibited the converse. The band gap decreased slightly with increasing annealing temperatures, reflecting increasing crystallinity. The refractive indices showed an anomalous trend of decrease with increasing annealing temperature and associated crystallinity; this is attributed to the effects of boron volatilization and associated air-filled pore formation. Although the anatase films outperformed the rutile films, the effect of annealing temperature is likely to have been dominant in that it determined the relative extents of crystallinity, grain size, RMS roughness, optical indirect band gap, and oxygen vacancy concentration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-04282-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5548-4936</orcidid><orcidid>https://orcid.org/0000-0002-7346-3271</orcidid><orcidid>https://orcid.org/0000-0003-3549-6969</orcidid><orcidid>https://orcid.org/0000-0001-6318-1855</orcidid><orcidid>https://orcid.org/0000-0003-0282-5535</orcidid><orcidid>https://orcid.org/0000-0002-5727-8332</orcidid><orcidid>https://orcid.org/0000-0002-0192-2424</orcidid><orcidid>https://orcid.org/0000-0002-9395-0771</orcidid><orcidid>https://orcid.org/0000-0002-2917-3875</orcidid><orcidid>https://orcid.org/0000-0003-2823-5250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-03, Vol.55 (9), p.3774-3794
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2571043553
source SpringerLink
subjects Anatase
Annealing
Boron
Borosilicate glass
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Contamination
Counterdiffusion
Crystal structure
Crystallinity
Crystallography and Scattering Methods
Ellipsometry
Energy gap
Epitaxial growth
Glass substrates
Grain boundaries
Grain size
Materials Science
Methylene blue
Optical properties
Polymer Sciences
Pore formation
Refractivity
Rutile
Single crystals
Solid Mechanics
Thin films
Titanium dioxide
Vaporization
X ray photoelectron spectroscopy
title Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contamination%20of%20TiO2%20thin%20films%20spin%20coated%20on%20borosilicate%20and%20rutile%20substrates&rft.jtitle=Journal%20of%20materials%20science&rft.au=Kabir,%20I.%20I.&rft.date=2020-03-01&rft.volume=55&rft.issue=9&rft.spage=3774&rft.epage=3794&rft.pages=3774-3794&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-04282-1&rft_dat=%3Cproquest_cross%3E2329105437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329105437&rft_id=info:pmid/&rfr_iscdi=true