Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar
A honey bee has to visit 3000 flowers to produce one-gram of honey. A honey bee’s hairy tongue dips at an average frequency of 5 Hz, and its glossal hairs erect rhythmically, performing like an opening and closing umbrella to trap the nectar. Dipping by a honey bee tongue is a typical micro-fluidic...
Gespeichert in:
Veröffentlicht in: | Journal of insect behavior 2020-07, Vol.33 (2-4), p.71-82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 2-4 |
container_start_page | 71 |
container_title | Journal of insect behavior |
container_volume | 33 |
creator | Chen, Yue Wu, Jianing Yang, Yunqiang Yan, Shaoze |
description | A honey bee has to visit 3000 flowers to produce one-gram of honey. A honey bee’s hairy tongue dips at an average frequency of 5 Hz, and its glossal hairs erect rhythmically, performing like an opening and closing umbrella to trap the nectar. Dipping by a honey bee tongue is a typical micro-fluidic transport with a low Reynolds number. The high intensify of feeding activities inevitably damage on the fragile tongue structure. We found that that in nature, honey bees with incomplete tongue tips can still load the nectar with hairs erected. Furthermore, the hairs deploy more to form a larger umbrella-like configuration, and the dipping frequency augments when tongues are damaged on the tips, possibly compensating for the nectar intake loss caused by structural damage. Here we examine by experiments and modeling the functional compensation facilitated by the compliant mechanisms in the honey bee tongue. We put forward a fluidic transport model to evaluate nectar intake rate in a damaged tongue, considering variation in hair erection angle and dipping frequency. Theoretical analysis indicates that both mechanisms compensate for nectar intake loss caused by damaged tongue. The findings suggest a new mechanism for functional compensation in flower-visiting insects that may prove useful in engineering applications. |
doi_str_mv | 10.1007/s10905-020-09747-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571043528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571043528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-56695d25acce59bd3560a1ac40455749dfe58ffad8e21146b6c66b823de1f40c3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL2jTJUTbnhDEv8xzSNK0dW1qTFtnNv-Hf85fYWcGbp48X3ueF70HomsItBRB3kYICToABASVSQdQJmlAuGJFSqlM0AakYEZwn5-gixi0AKMnFBK0Xvbdd3Xizw7Nm3zofzTHi2mODl413B5w79_XxGfHc7E3lCrxpfNU7_P5a7xye121b-wqvne1MuERnpdlFd_V7p-hl8bCZLcnq-fFpdr8iNqGqIzzLFC8YN9Y6rvIi4RkYamwKKeciVUXpuCxLU0jHKE2zPLNZlkuWFI6WKdhkim7G3TY0b72Lnd42fRieiJpxQSFNOJNDi40tG5oYgyt1G-q9CQdNQR-96dGbHrzpH29aDVAyQnEo-8qFv-l_qG-XtnDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571043528</pqid></control><display><type>article</type><title>Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Yue ; Wu, Jianing ; Yang, Yunqiang ; Yan, Shaoze</creator><creatorcontrib>Chen, Yue ; Wu, Jianing ; Yang, Yunqiang ; Yan, Shaoze</creatorcontrib><description>A honey bee has to visit 3000 flowers to produce one-gram of honey. A honey bee’s hairy tongue dips at an average frequency of 5 Hz, and its glossal hairs erect rhythmically, performing like an opening and closing umbrella to trap the nectar. Dipping by a honey bee tongue is a typical micro-fluidic transport with a low Reynolds number. The high intensify of feeding activities inevitably damage on the fragile tongue structure. We found that that in nature, honey bees with incomplete tongue tips can still load the nectar with hairs erected. Furthermore, the hairs deploy more to form a larger umbrella-like configuration, and the dipping frequency augments when tongues are damaged on the tips, possibly compensating for the nectar intake loss caused by structural damage. Here we examine by experiments and modeling the functional compensation facilitated by the compliant mechanisms in the honey bee tongue. We put forward a fluidic transport model to evaluate nectar intake rate in a damaged tongue, considering variation in hair erection angle and dipping frequency. Theoretical analysis indicates that both mechanisms compensate for nectar intake loss caused by damaged tongue. The findings suggest a new mechanism for functional compensation in flower-visiting insects that may prove useful in engineering applications.</description><identifier>ISSN: 0892-7553</identifier><identifier>EISSN: 1572-8889</identifier><identifier>DOI: 10.1007/s10905-020-09747-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Animal Ecology ; Apis mellifera ; Bees ; Behavioral Sciences ; Biomedical and Life Sciences ; Compensation ; Computational fluid dynamics ; Dipping ; Entomology ; Evolutionary Biology ; Flowers ; Fluid flow ; Frequency analysis ; Honey ; Insects ; Life Sciences ; Nectar ; Neurobiology ; Reynolds number ; Structural damage ; Theoretical analysis ; Tips ; Tongue</subject><ispartof>Journal of insect behavior, 2020-07, Vol.33 (2-4), p.71-82</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-56695d25acce59bd3560a1ac40455749dfe58ffad8e21146b6c66b823de1f40c3</citedby><cites>FETCH-LOGICAL-c319t-56695d25acce59bd3560a1ac40455749dfe58ffad8e21146b6c66b823de1f40c3</cites><orcidid>0000-0003-3297-2966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10905-020-09747-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10905-020-09747-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Yang, Yunqiang</creatorcontrib><creatorcontrib>Yan, Shaoze</creatorcontrib><title>Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar</title><title>Journal of insect behavior</title><addtitle>J Insect Behav</addtitle><description>A honey bee has to visit 3000 flowers to produce one-gram of honey. A honey bee’s hairy tongue dips at an average frequency of 5 Hz, and its glossal hairs erect rhythmically, performing like an opening and closing umbrella to trap the nectar. Dipping by a honey bee tongue is a typical micro-fluidic transport with a low Reynolds number. The high intensify of feeding activities inevitably damage on the fragile tongue structure. We found that that in nature, honey bees with incomplete tongue tips can still load the nectar with hairs erected. Furthermore, the hairs deploy more to form a larger umbrella-like configuration, and the dipping frequency augments when tongues are damaged on the tips, possibly compensating for the nectar intake loss caused by structural damage. Here we examine by experiments and modeling the functional compensation facilitated by the compliant mechanisms in the honey bee tongue. We put forward a fluidic transport model to evaluate nectar intake rate in a damaged tongue, considering variation in hair erection angle and dipping frequency. Theoretical analysis indicates that both mechanisms compensate for nectar intake loss caused by damaged tongue. The findings suggest a new mechanism for functional compensation in flower-visiting insects that may prove useful in engineering applications.</description><subject>Agriculture</subject><subject>Animal Ecology</subject><subject>Apis mellifera</subject><subject>Bees</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Compensation</subject><subject>Computational fluid dynamics</subject><subject>Dipping</subject><subject>Entomology</subject><subject>Evolutionary Biology</subject><subject>Flowers</subject><subject>Fluid flow</subject><subject>Frequency analysis</subject><subject>Honey</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Nectar</subject><subject>Neurobiology</subject><subject>Reynolds number</subject><subject>Structural damage</subject><subject>Theoretical analysis</subject><subject>Tips</subject><subject>Tongue</subject><issn>0892-7553</issn><issn>1572-8889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc_RL2jTJUTbnhDEv8xzSNK0dW1qTFtnNv-Hf85fYWcGbp48X3ueF70HomsItBRB3kYICToABASVSQdQJmlAuGJFSqlM0AakYEZwn5-gixi0AKMnFBK0Xvbdd3Xizw7Nm3zofzTHi2mODl413B5w79_XxGfHc7E3lCrxpfNU7_P5a7xye121b-wqvne1MuERnpdlFd_V7p-hl8bCZLcnq-fFpdr8iNqGqIzzLFC8YN9Y6rvIi4RkYamwKKeciVUXpuCxLU0jHKE2zPLNZlkuWFI6WKdhkim7G3TY0b72Lnd42fRieiJpxQSFNOJNDi40tG5oYgyt1G-q9CQdNQR-96dGbHrzpH29aDVAyQnEo-8qFv-l_qG-XtnDE</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chen, Yue</creator><creator>Wu, Jianing</creator><creator>Yang, Yunqiang</creator><creator>Yan, Shaoze</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3297-2966</orcidid></search><sort><creationdate>20200701</creationdate><title>Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar</title><author>Chen, Yue ; Wu, Jianing ; Yang, Yunqiang ; Yan, Shaoze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-56695d25acce59bd3560a1ac40455749dfe58ffad8e21146b6c66b823de1f40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Animal Ecology</topic><topic>Apis mellifera</topic><topic>Bees</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Compensation</topic><topic>Computational fluid dynamics</topic><topic>Dipping</topic><topic>Entomology</topic><topic>Evolutionary Biology</topic><topic>Flowers</topic><topic>Fluid flow</topic><topic>Frequency analysis</topic><topic>Honey</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Nectar</topic><topic>Neurobiology</topic><topic>Reynolds number</topic><topic>Structural damage</topic><topic>Theoretical analysis</topic><topic>Tips</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yue</creatorcontrib><creatorcontrib>Wu, Jianing</creatorcontrib><creatorcontrib>Yang, Yunqiang</creatorcontrib><creatorcontrib>Yan, Shaoze</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of insect behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yue</au><au>Wu, Jianing</au><au>Yang, Yunqiang</au><au>Yan, Shaoze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar</atitle><jtitle>Journal of insect behavior</jtitle><stitle>J Insect Behav</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>33</volume><issue>2-4</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>0892-7553</issn><eissn>1572-8889</eissn><abstract>A honey bee has to visit 3000 flowers to produce one-gram of honey. A honey bee’s hairy tongue dips at an average frequency of 5 Hz, and its glossal hairs erect rhythmically, performing like an opening and closing umbrella to trap the nectar. Dipping by a honey bee tongue is a typical micro-fluidic transport with a low Reynolds number. The high intensify of feeding activities inevitably damage on the fragile tongue structure. We found that that in nature, honey bees with incomplete tongue tips can still load the nectar with hairs erected. Furthermore, the hairs deploy more to form a larger umbrella-like configuration, and the dipping frequency augments when tongues are damaged on the tips, possibly compensating for the nectar intake loss caused by structural damage. Here we examine by experiments and modeling the functional compensation facilitated by the compliant mechanisms in the honey bee tongue. We put forward a fluidic transport model to evaluate nectar intake rate in a damaged tongue, considering variation in hair erection angle and dipping frequency. Theoretical analysis indicates that both mechanisms compensate for nectar intake loss caused by damaged tongue. The findings suggest a new mechanism for functional compensation in flower-visiting insects that may prove useful in engineering applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10905-020-09747-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3297-2966</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7553 |
ispartof | Journal of insect behavior, 2020-07, Vol.33 (2-4), p.71-82 |
issn | 0892-7553 1572-8889 |
language | eng |
recordid | cdi_proquest_journals_2571043528 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Animal Ecology Apis mellifera Bees Behavioral Sciences Biomedical and Life Sciences Compensation Computational fluid dynamics Dipping Entomology Evolutionary Biology Flowers Fluid flow Frequency analysis Honey Insects Life Sciences Nectar Neurobiology Reynolds number Structural damage Theoretical analysis Tips Tongue |
title | Functional Compensation in a Honey bee’s Damaged Tongue while Dipping Nectar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Compensation%20in%20a%20Honey%20bee%E2%80%99s%20Damaged%20Tongue%20while%20Dipping%20Nectar&rft.jtitle=Journal%20of%20insect%20behavior&rft.au=Chen,%20Yue&rft.date=2020-07-01&rft.volume=33&rft.issue=2-4&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=0892-7553&rft.eissn=1572-8889&rft_id=info:doi/10.1007/s10905-020-09747-9&rft_dat=%3Cproquest_cross%3E2571043528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571043528&rft_id=info:pmid/&rfr_iscdi=true |