Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application
Funds transfer is a series of orders from the sender whose purpose is to move money from the sender to the recipient. The high interbank transaction fees imposed on each bank makes people use an interbank money transfer application, interbank money transfer transactions such as the Flip application...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-11, Vol.1641 (1), p.12088 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12088 |
container_title | Journal of physics. Conference series |
container_volume | 1641 |
creator | Masripah, Siti Utami, Lila Dini Amalia, Hilda Nurlaela, Dini Ryansyah, Muhamad Yusuf, Lestari |
description | Funds transfer is a series of orders from the sender whose purpose is to move money from the sender to the recipient. The high interbank transaction fees imposed on each bank makes people use an interbank money transfer application, interbank money transfer transactions such as the Flip application are much in demand by the public because there are no administrative fees imposed on users. Opinion of the users of the application is processed using a text mining classification algorithm, namely the Naïve Bayes Algorithm and k-NN, the two algorithms are compared to produce which algorithm has high accuracy in processing the opinion of the flip money transfer application. Based on this matter, researchers conducted a sentiment analysis of the Flip Application, K-Nearest Neighbor (k-NN). After conducting research on sentiment analysis of Flip Applications, the Naïve Bayes classification algorithm has an accuracy of 91.25% and an ROC curve with an AUC value of 0.500. Whereas K-Nearest Neighbor has an accuracy of 85.25% and an ROC curve with an AUC value of 0.937. The Naïve Bayes algorithm can be said to be "good classification" and the public can make the decision to use the Flip Application. |
doi_str_mv | 10.1088/1742-6596/1641/1/012088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2571034789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571034789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2748-c42e911b36fdd0966a5e547f264e06490e3b56691823d43130f2bb238eea7b7e3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3wmy-mrSXo_gx2VBwXnkR0jaZmV1Skw7cv7elYyII5uaEc573HHii6BLBGwTTNEac4glLMhYjRlGMYohw1z-KRofJ8eGfpqfRWQhrCEn3-Ch6y92mkd4EZ4HTYKm-WrAw1tgVyGsZgtGmlK3pptN65bxp3zcBGAtmtlW-kPYDLJxVO7D00gatPJg2Tb2PnEcnWtZBXezrOHq9u13mD5P50_0sn84nJeY0nZQUqwyhgjBdVTBjTCYqoVxjRhVkNIOKFAljGUoxqShBBGpcFJikSklecEXG0dWwt_Huc6tCK9Zu6213UuCEI0goT7OO4gNVeheCV1o03myk3wkERW9S9I5E70v0JgUSg8kueT0kjWt-Vj8-5y-_QdFUuoPJH_B_J74BIieCvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571034789</pqid></control><display><type>article</type><title>Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Masripah, Siti ; Utami, Lila Dini ; Amalia, Hilda ; Nurlaela, Dini ; Ryansyah, Muhamad ; Yusuf, Lestari</creator><creatorcontrib>Masripah, Siti ; Utami, Lila Dini ; Amalia, Hilda ; Nurlaela, Dini ; Ryansyah, Muhamad ; Yusuf, Lestari</creatorcontrib><description>Funds transfer is a series of orders from the sender whose purpose is to move money from the sender to the recipient. The high interbank transaction fees imposed on each bank makes people use an interbank money transfer application, interbank money transfer transactions such as the Flip application are much in demand by the public because there are no administrative fees imposed on users. Opinion of the users of the application is processed using a text mining classification algorithm, namely the Naïve Bayes Algorithm and k-NN, the two algorithms are compared to produce which algorithm has high accuracy in processing the opinion of the flip money transfer application. Based on this matter, researchers conducted a sentiment analysis of the Flip Application, K-Nearest Neighbor (k-NN). After conducting research on sentiment analysis of Flip Applications, the Naïve Bayes classification algorithm has an accuracy of 91.25% and an ROC curve with an AUC value of 0.500. Whereas K-Nearest Neighbor has an accuracy of 85.25% and an ROC curve with an AUC value of 0.937. The Naïve Bayes algorithm can be said to be "good classification" and the public can make the decision to use the Flip Application.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1641/1/012088</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Algorithms ; Classification ; Data mining ; Physics ; Sentiment analysis ; Transfer of funds</subject><ispartof>Journal of physics. Conference series, 2020-11, Vol.1641 (1), p.12088</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2748-c42e911b36fdd0966a5e547f264e06490e3b56691823d43130f2bb238eea7b7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1641/1/012088/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Masripah, Siti</creatorcontrib><creatorcontrib>Utami, Lila Dini</creatorcontrib><creatorcontrib>Amalia, Hilda</creatorcontrib><creatorcontrib>Nurlaela, Dini</creatorcontrib><creatorcontrib>Ryansyah, Muhamad</creatorcontrib><creatorcontrib>Yusuf, Lestari</creatorcontrib><title>Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Funds transfer is a series of orders from the sender whose purpose is to move money from the sender to the recipient. The high interbank transaction fees imposed on each bank makes people use an interbank money transfer application, interbank money transfer transactions such as the Flip application are much in demand by the public because there are no administrative fees imposed on users. Opinion of the users of the application is processed using a text mining classification algorithm, namely the Naïve Bayes Algorithm and k-NN, the two algorithms are compared to produce which algorithm has high accuracy in processing the opinion of the flip money transfer application. Based on this matter, researchers conducted a sentiment analysis of the Flip Application, K-Nearest Neighbor (k-NN). After conducting research on sentiment analysis of Flip Applications, the Naïve Bayes classification algorithm has an accuracy of 91.25% and an ROC curve with an AUC value of 0.500. Whereas K-Nearest Neighbor has an accuracy of 85.25% and an ROC curve with an AUC value of 0.937. The Naïve Bayes algorithm can be said to be "good classification" and the public can make the decision to use the Flip Application.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Data mining</subject><subject>Physics</subject><subject>Sentiment analysis</subject><subject>Transfer of funds</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3wmy-mrSXo_gx2VBwXnkR0jaZmV1Skw7cv7elYyII5uaEc573HHii6BLBGwTTNEac4glLMhYjRlGMYohw1z-KRofJ8eGfpqfRWQhrCEn3-Ch6y92mkd4EZ4HTYKm-WrAw1tgVyGsZgtGmlK3pptN65bxp3zcBGAtmtlW-kPYDLJxVO7D00gatPJg2Tb2PnEcnWtZBXezrOHq9u13mD5P50_0sn84nJeY0nZQUqwyhgjBdVTBjTCYqoVxjRhVkNIOKFAljGUoxqShBBGpcFJikSklecEXG0dWwt_Huc6tCK9Zu6213UuCEI0goT7OO4gNVeheCV1o03myk3wkERW9S9I5E70v0JgUSg8kueT0kjWt-Vj8-5y-_QdFUuoPJH_B_J74BIieCvQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Masripah, Siti</creator><creator>Utami, Lila Dini</creator><creator>Amalia, Hilda</creator><creator>Nurlaela, Dini</creator><creator>Ryansyah, Muhamad</creator><creator>Yusuf, Lestari</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201101</creationdate><title>Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application</title><author>Masripah, Siti ; Utami, Lila Dini ; Amalia, Hilda ; Nurlaela, Dini ; Ryansyah, Muhamad ; Yusuf, Lestari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2748-c42e911b36fdd0966a5e547f264e06490e3b56691823d43130f2bb238eea7b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Data mining</topic><topic>Physics</topic><topic>Sentiment analysis</topic><topic>Transfer of funds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masripah, Siti</creatorcontrib><creatorcontrib>Utami, Lila Dini</creatorcontrib><creatorcontrib>Amalia, Hilda</creatorcontrib><creatorcontrib>Nurlaela, Dini</creatorcontrib><creatorcontrib>Ryansyah, Muhamad</creatorcontrib><creatorcontrib>Yusuf, Lestari</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masripah, Siti</au><au>Utami, Lila Dini</au><au>Amalia, Hilda</au><au>Nurlaela, Dini</au><au>Ryansyah, Muhamad</au><au>Yusuf, Lestari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>1641</volume><issue>1</issue><spage>12088</spage><pages>12088-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Funds transfer is a series of orders from the sender whose purpose is to move money from the sender to the recipient. The high interbank transaction fees imposed on each bank makes people use an interbank money transfer application, interbank money transfer transactions such as the Flip application are much in demand by the public because there are no administrative fees imposed on users. Opinion of the users of the application is processed using a text mining classification algorithm, namely the Naïve Bayes Algorithm and k-NN, the two algorithms are compared to produce which algorithm has high accuracy in processing the opinion of the flip money transfer application. Based on this matter, researchers conducted a sentiment analysis of the Flip Application, K-Nearest Neighbor (k-NN). After conducting research on sentiment analysis of Flip Applications, the Naïve Bayes classification algorithm has an accuracy of 91.25% and an ROC curve with an AUC value of 0.500. Whereas K-Nearest Neighbor has an accuracy of 85.25% and an ROC curve with an AUC value of 0.937. The Naïve Bayes algorithm can be said to be "good classification" and the public can make the decision to use the Flip Application.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1641/1/012088</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-11, Vol.1641 (1), p.12088 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2571034789 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Classification Data mining Physics Sentiment analysis Transfer of funds |
title | Comparison of Text Mining Classification Algorithms in Interbank Money Transfer Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Text%20Mining%20Classification%20Algorithms%20in%20Interbank%20Money%20Transfer%20Application&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Masripah,%20Siti&rft.date=2020-11-01&rft.volume=1641&rft.issue=1&rft.spage=12088&rft.pages=12088-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1641/1/012088&rft_dat=%3Cproquest_cross%3E2571034789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571034789&rft_id=info:pmid/&rfr_iscdi=true |