Vehicle Detection: A Review

Vehicle detection based computer vision is the essential algorithm in autonomous driving, aims at identifying which locating vehicles by digital images or videos. The basic idea of vehicle detection is detecting "blocks," which reflects the position of the vehicle in images or videos. Besi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-09, Vol.1634 (1), p.12107
Hauptverfasser: Meng, Chaochao, Bao, Hong, Ma, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12107
container_title Journal of physics. Conference series
container_volume 1634
creator Meng, Chaochao
Bao, Hong
Ma, Yan
description Vehicle detection based computer vision is the essential algorithm in autonomous driving, aims at identifying which locating vehicles by digital images or videos. The basic idea of vehicle detection is detecting "blocks," which reflects the position of the vehicle in images or videos. Besides, this paper discusses 3D vehicle detection algorithms based on stereo perception, which originated from advanced planar vehicle detection perception. Finally, this paper summarizes the vehicle detection algorithms in recent years in terms of the difference between the feature extraction approach and the perceived results. It proposes hypotheses for further in-depth study of the vehicle detection algorithms.
doi_str_mv 10.1088/1742-6596/1634/1/012107
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2570978824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570978824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-31a727d962daf925687e7252cb07b1411bd8d3b99b0a059f31e8458ed0364ff33</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhRdRsFZ_gQ8GfBNidva-vpXWKwXF2-uSZHcxpTZxN1X89yZEKoLgvMzAfOcMcxA6AnwKWKkMJCOp4FpkICjLIMNAAMstNNpstjezUrtoL8YFxrQrOUKHz-6lKpcumbnWlW1Vr86SSXLv3iv3sY92fL6M7uC7j9HTxfnj9Cqd315eTyfztGRA25RCLom0WhCbe024UNJJwklZYFkAAyissrTQusA55tpTcIpx5SymgnlP6RgdD75NqN_WLrZmUa_DqjtpCJdYS6UI6yg5UGWoYwzOmyZUr3n4NIBNn4TpfzT9v6ZPwoAZkuiUJ4Oyqpsf65u76cNv0DTWdzD9A_7vxBd_Imog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570978824</pqid></control><display><type>article</type><title>Vehicle Detection: A Review</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Meng, Chaochao ; Bao, Hong ; Ma, Yan</creator><creatorcontrib>Meng, Chaochao ; Bao, Hong ; Ma, Yan</creatorcontrib><description>Vehicle detection based computer vision is the essential algorithm in autonomous driving, aims at identifying which locating vehicles by digital images or videos. The basic idea of vehicle detection is detecting "blocks," which reflects the position of the vehicle in images or videos. Besides, this paper discusses 3D vehicle detection algorithms based on stereo perception, which originated from advanced planar vehicle detection perception. Finally, this paper summarizes the vehicle detection algorithms in recent years in terms of the difference between the feature extraction approach and the perceived results. It proposes hypotheses for further in-depth study of the vehicle detection algorithms.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1634/1/012107</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Computer vision ; Digital imaging ; Feature extraction ; Perception ; Physics ; Video</subject><ispartof>Journal of physics. Conference series, 2020-09, Vol.1634 (1), p.12107</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-31a727d962daf925687e7252cb07b1411bd8d3b99b0a059f31e8458ed0364ff33</citedby><cites>FETCH-LOGICAL-c413t-31a727d962daf925687e7252cb07b1411bd8d3b99b0a059f31e8458ed0364ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1634/1/012107/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Meng, Chaochao</creatorcontrib><creatorcontrib>Bao, Hong</creatorcontrib><creatorcontrib>Ma, Yan</creatorcontrib><title>Vehicle Detection: A Review</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Vehicle detection based computer vision is the essential algorithm in autonomous driving, aims at identifying which locating vehicles by digital images or videos. The basic idea of vehicle detection is detecting "blocks," which reflects the position of the vehicle in images or videos. Besides, this paper discusses 3D vehicle detection algorithms based on stereo perception, which originated from advanced planar vehicle detection perception. Finally, this paper summarizes the vehicle detection algorithms in recent years in terms of the difference between the feature extraction approach and the perceived results. It proposes hypotheses for further in-depth study of the vehicle detection algorithms.</description><subject>Algorithms</subject><subject>Computer vision</subject><subject>Digital imaging</subject><subject>Feature extraction</subject><subject>Perception</subject><subject>Physics</subject><subject>Video</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLw0AQhRdRsFZ_gQ8GfBNidva-vpXWKwXF2-uSZHcxpTZxN1X89yZEKoLgvMzAfOcMcxA6AnwKWKkMJCOp4FpkICjLIMNAAMstNNpstjezUrtoL8YFxrQrOUKHz-6lKpcumbnWlW1Vr86SSXLv3iv3sY92fL6M7uC7j9HTxfnj9Cqd315eTyfztGRA25RCLom0WhCbe024UNJJwklZYFkAAyissrTQusA55tpTcIpx5SymgnlP6RgdD75NqN_WLrZmUa_DqjtpCJdYS6UI6yg5UGWoYwzOmyZUr3n4NIBNn4TpfzT9v6ZPwoAZkuiUJ4Oyqpsf65u76cNv0DTWdzD9A_7vxBd_Imog</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Meng, Chaochao</creator><creator>Bao, Hong</creator><creator>Ma, Yan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200901</creationdate><title>Vehicle Detection: A Review</title><author>Meng, Chaochao ; Bao, Hong ; Ma, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-31a727d962daf925687e7252cb07b1411bd8d3b99b0a059f31e8458ed0364ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer vision</topic><topic>Digital imaging</topic><topic>Feature extraction</topic><topic>Perception</topic><topic>Physics</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Chaochao</creatorcontrib><creatorcontrib>Bao, Hong</creatorcontrib><creatorcontrib>Ma, Yan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Chaochao</au><au>Bao, Hong</au><au>Ma, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Detection: A Review</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>1634</volume><issue>1</issue><spage>12107</spage><pages>12107-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Vehicle detection based computer vision is the essential algorithm in autonomous driving, aims at identifying which locating vehicles by digital images or videos. The basic idea of vehicle detection is detecting "blocks," which reflects the position of the vehicle in images or videos. Besides, this paper discusses 3D vehicle detection algorithms based on stereo perception, which originated from advanced planar vehicle detection perception. Finally, this paper summarizes the vehicle detection algorithms in recent years in terms of the difference between the feature extraction approach and the perceived results. It proposes hypotheses for further in-depth study of the vehicle detection algorithms.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1634/1/012107</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-09, Vol.1634 (1), p.12107
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2570978824
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Computer vision
Digital imaging
Feature extraction
Perception
Physics
Video
title Vehicle Detection: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Detection:%20A%20Review&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Meng,%20Chaochao&rft.date=2020-09-01&rft.volume=1634&rft.issue=1&rft.spage=12107&rft.pages=12107-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1634/1/012107&rft_dat=%3Cproquest_iop_j%3E2570978824%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570978824&rft_id=info:pmid/&rfr_iscdi=true