Research on deep reinforcement learning multi-path routing planning in SDN
Based on the research of current SDN traffic scheduling technology, combining the advantages of reinforcement learning in strategy optimization and the characteristics of SDN network resource centralized control, and using the neural network of depth learning to fit the Q-value table, this paper pro...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-08, Vol.1617 (1), p.12043 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12043 |
container_title | Journal of physics. Conference series |
container_volume | 1617 |
creator | Wang, Zheng Lu, Zhengyong Li, Chuanhuang |
description | Based on the research of current SDN traffic scheduling technology, combining the advantages of reinforcement learning in strategy optimization and the characteristics of SDN network resource centralized control, and using the neural network of depth learning to fit the Q-value table, this paper proposes an intelligent multi-path routing planning method based on depth reinforcement learning. Experiments show that the method can use the characteristics of SDN to route the network traffic in multi-path according to the current state information and traffic characteristics of the network; using the advantages of reinforcement learning, it can find multiple forwarding paths for different flows that conform to their traffic characteristics, and improve the utilization rate of the network link bandwidth; and using the neural network of deep learning to fit the Q value in the traditional reinforcement learning algorithm Table. |
doi_str_mv | 10.1088/1742-6596/1617/1/012043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570783510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570783510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3283-fb6878b389783df67403fdee8d5a09e566374d2ef2adff2874cfb5236d068d6e3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUx4MoOKefwYBvQm0ubZI9yryOoeL0ObRN4jq6pCbtg9_e1MpEEDwvOeR_OfAD4BSjC4yESDHPSMLyGUsxwzzFKcIEZXQPTHbK_m4X4hAchbBBiMbhE7B41kEXvlpDZ6HSuoVe19Y4X-mtth1somhr-wa3fdPVSVt0a-hd3w1fbVPYL622cHX1cAwOTNEEffL9TsHrzfXL_C5ZPt7ezy-XSUWJoIkpmeCipGLGBVWG8QxREy8LlRdopnPGKM8U0YYUyhgieFaZMieUKcSEYppOwdnY23r33uvQyY3rvY0nJck5iq05RtHFR1flXQheG9n6elv4D4mRHMDJAYkc8MgBnMRyBBeTdEzWrv2p_j91_kdq8TRf_TbKVhn6Cf5HfOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570783510</pqid></control><display><type>article</type><title>Research on deep reinforcement learning multi-path routing planning in SDN</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Zheng ; Lu, Zhengyong ; Li, Chuanhuang</creator><creatorcontrib>Wang, Zheng ; Lu, Zhengyong ; Li, Chuanhuang</creatorcontrib><description>Based on the research of current SDN traffic scheduling technology, combining the advantages of reinforcement learning in strategy optimization and the characteristics of SDN network resource centralized control, and using the neural network of depth learning to fit the Q-value table, this paper proposes an intelligent multi-path routing planning method based on depth reinforcement learning. Experiments show that the method can use the characteristics of SDN to route the network traffic in multi-path according to the current state information and traffic characteristics of the network; using the advantages of reinforcement learning, it can find multiple forwarding paths for different flows that conform to their traffic characteristics, and improve the utilization rate of the network link bandwidth; and using the neural network of deep learning to fit the Q value in the traditional reinforcement learning algorithm Table.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1617/1/012043</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Communications traffic ; Deep learning ; Machine learning ; Neural networks ; Optimization ; Physics ; Route planning ; Software-defined networking ; Traffic flow ; Traffic information ; Traffic planning</subject><ispartof>Journal of physics. Conference series, 2020-08, Vol.1617 (1), p.12043</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3283-fb6878b389783df67403fdee8d5a09e566374d2ef2adff2874cfb5236d068d6e3</citedby><cites>FETCH-LOGICAL-c3283-fb6878b389783df67403fdee8d5a09e566374d2ef2adff2874cfb5236d068d6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1617/1/012043/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Lu, Zhengyong</creatorcontrib><creatorcontrib>Li, Chuanhuang</creatorcontrib><title>Research on deep reinforcement learning multi-path routing planning in SDN</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Based on the research of current SDN traffic scheduling technology, combining the advantages of reinforcement learning in strategy optimization and the characteristics of SDN network resource centralized control, and using the neural network of depth learning to fit the Q-value table, this paper proposes an intelligent multi-path routing planning method based on depth reinforcement learning. Experiments show that the method can use the characteristics of SDN to route the network traffic in multi-path according to the current state information and traffic characteristics of the network; using the advantages of reinforcement learning, it can find multiple forwarding paths for different flows that conform to their traffic characteristics, and improve the utilization rate of the network link bandwidth; and using the neural network of deep learning to fit the Q value in the traditional reinforcement learning algorithm Table.</description><subject>Algorithms</subject><subject>Communications traffic</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physics</subject><subject>Route planning</subject><subject>Software-defined networking</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic planning</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLwzAUx4MoOKefwYBvQm0ubZI9yryOoeL0ObRN4jq6pCbtg9_e1MpEEDwvOeR_OfAD4BSjC4yESDHPSMLyGUsxwzzFKcIEZXQPTHbK_m4X4hAchbBBiMbhE7B41kEXvlpDZ6HSuoVe19Y4X-mtth1somhr-wa3fdPVSVt0a-hd3w1fbVPYL622cHX1cAwOTNEEffL9TsHrzfXL_C5ZPt7ezy-XSUWJoIkpmeCipGLGBVWG8QxREy8LlRdopnPGKM8U0YYUyhgieFaZMieUKcSEYppOwdnY23r33uvQyY3rvY0nJck5iq05RtHFR1flXQheG9n6elv4D4mRHMDJAYkc8MgBnMRyBBeTdEzWrv2p_j91_kdq8TRf_TbKVhn6Cf5HfOo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Zheng</creator><creator>Lu, Zhengyong</creator><creator>Li, Chuanhuang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200801</creationdate><title>Research on deep reinforcement learning multi-path routing planning in SDN</title><author>Wang, Zheng ; Lu, Zhengyong ; Li, Chuanhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3283-fb6878b389783df67403fdee8d5a09e566374d2ef2adff2874cfb5236d068d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications traffic</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physics</topic><topic>Route planning</topic><topic>Software-defined networking</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Lu, Zhengyong</creatorcontrib><creatorcontrib>Li, Chuanhuang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zheng</au><au>Lu, Zhengyong</au><au>Li, Chuanhuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on deep reinforcement learning multi-path routing planning in SDN</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>1617</volume><issue>1</issue><spage>12043</spage><pages>12043-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Based on the research of current SDN traffic scheduling technology, combining the advantages of reinforcement learning in strategy optimization and the characteristics of SDN network resource centralized control, and using the neural network of depth learning to fit the Q-value table, this paper proposes an intelligent multi-path routing planning method based on depth reinforcement learning. Experiments show that the method can use the characteristics of SDN to route the network traffic in multi-path according to the current state information and traffic characteristics of the network; using the advantages of reinforcement learning, it can find multiple forwarding paths for different flows that conform to their traffic characteristics, and improve the utilization rate of the network link bandwidth; and using the neural network of deep learning to fit the Q value in the traditional reinforcement learning algorithm Table.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1617/1/012043</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-08, Vol.1617 (1), p.12043 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2570783510 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Communications traffic Deep learning Machine learning Neural networks Optimization Physics Route planning Software-defined networking Traffic flow Traffic information Traffic planning |
title | Research on deep reinforcement learning multi-path routing planning in SDN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20deep%20reinforcement%20learning%20multi-path%20routing%20planning%20in%20SDN&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wang,%20Zheng&rft.date=2020-08-01&rft.volume=1617&rft.issue=1&rft.spage=12043&rft.pages=12043-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1617/1/012043&rft_dat=%3Cproquest_cross%3E2570783510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570783510&rft_id=info:pmid/&rfr_iscdi=true |