Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism

A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-08, Vol.1612 (1), p.12009
Hauptverfasser: Chernega, Vladimir N, Man'ko, Olga V, Man'ko, Vladimir I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12009
container_title Journal of physics. Conference series
container_volume 1612
creator Chernega, Vladimir N
Man'ko, Olga V
Man'ko, Vladimir I
description A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.
doi_str_mv 10.1088/1742-6596/1612/1/012009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570690190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570690190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwYB3QszOHpLNpVTrgYr1hJfLNtnQLU023U0u6tObEK0IgnMzA_PN_PAhdAr4ArAQESSMhDFP4whiIBFEGAjG6R4a7Tb7u1mIQ3Tk_Qpj2lUyQu9zZxdqYdam2QbPunba66pRjbFVYIvgqVVV05bBg86WqjKZD1SVB81SDxvzoV14pTffczC1rlRr48tjdFCotdcnX32M3qbXr5PbcPZ4cze5nIUZA9qEVDCtCAFGKFEiIQzjJMOEMM0JCM45FgA5LHJKCpbhhKYF0JQXwJmAPKZ0jM6Gv7Wzm1b7Rq5s66ouUhKe4DjFkOKOSgYqc9Z7pwtZO1Mqt5WAZW9R9n5k70r2FiXIwWJ3eT5cGlv_vL6fT15-g7LOiw6mf8D_RXwCCiSALg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570690190</pqid></control><display><type>article</type><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</creator><creatorcontrib>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</creatorcontrib><description>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1612/1/012009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Density ; Kinetic equations ; Operators ; Physics ; probability representation ; quantizer-dequantizer operators ; Quantum mechanics ; Quantum theory ; quantum tomography ; qubit states ; Qubits (quantum computing)</subject><ispartof>Journal of physics. Conference series, 2020-08, Vol.1612 (1), p.12009</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</citedby><cites>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1612/1/012009/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chernega, Vladimir N</creatorcontrib><creatorcontrib>Man'ko, Olga V</creatorcontrib><creatorcontrib>Man'ko, Vladimir I</creatorcontrib><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</description><subject>Density</subject><subject>Kinetic equations</subject><subject>Operators</subject><subject>Physics</subject><subject>probability representation</subject><subject>quantizer-dequantizer operators</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>quantum tomography</subject><subject>qubit states</subject><subject>Qubits (quantum computing)</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwYB3QszOHpLNpVTrgYr1hJfLNtnQLU023U0u6tObEK0IgnMzA_PN_PAhdAr4ArAQESSMhDFP4whiIBFEGAjG6R4a7Tb7u1mIQ3Tk_Qpj2lUyQu9zZxdqYdam2QbPunba66pRjbFVYIvgqVVV05bBg86WqjKZD1SVB81SDxvzoV14pTffczC1rlRr48tjdFCotdcnX32M3qbXr5PbcPZ4cze5nIUZA9qEVDCtCAFGKFEiIQzjJMOEMM0JCM45FgA5LHJKCpbhhKYF0JQXwJmAPKZ0jM6Gv7Wzm1b7Rq5s66ouUhKe4DjFkOKOSgYqc9Z7pwtZO1Mqt5WAZW9R9n5k70r2FiXIwWJ3eT5cGlv_vL6fT15-g7LOiw6mf8D_RXwCCiSALg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chernega, Vladimir N</creator><creator>Man'ko, Olga V</creator><creator>Man'ko, Vladimir I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200801</creationdate><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><author>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Density</topic><topic>Kinetic equations</topic><topic>Operators</topic><topic>Physics</topic><topic>probability representation</topic><topic>quantizer-dequantizer operators</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>quantum tomography</topic><topic>qubit states</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernega, Vladimir N</creatorcontrib><creatorcontrib>Man'ko, Olga V</creatorcontrib><creatorcontrib>Man'ko, Vladimir I</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernega, Vladimir N</au><au>Man'ko, Olga V</au><au>Man'ko, Vladimir I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>1612</volume><issue>1</issue><spage>12009</spage><pages>12009-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1612/1/012009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-08, Vol.1612 (1), p.12009
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2570690190
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Density
Kinetic equations
Operators
Physics
probability representation
quantizer-dequantizer operators
Quantum mechanics
Quantum theory
quantum tomography
qubit states
Qubits (quantum computing)
title Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20Representation%20of%20Quantum%20Mechanics%20and%20the%20Quantizer-Dequantizer%20Formalism&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chernega,%20Vladimir%20N&rft.date=2020-08-01&rft.volume=1612&rft.issue=1&rft.spage=12009&rft.pages=12009-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1612/1/012009&rft_dat=%3Cproquest_cross%3E2570690190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570690190&rft_id=info:pmid/&rfr_iscdi=true