Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism
A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equatio...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-08, Vol.1612 (1), p.12009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12009 |
container_title | Journal of physics. Conference series |
container_volume | 1612 |
creator | Chernega, Vladimir N Man'ko, Olga V Man'ko, Vladimir I |
description | A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed. |
doi_str_mv | 10.1088/1742-6596/1612/1/012009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570690190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570690190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFafwYB3QszOHpLNpVTrgYr1hJfLNtnQLU023U0u6tObEK0IgnMzA_PN_PAhdAr4ArAQESSMhDFP4whiIBFEGAjG6R4a7Tb7u1mIQ3Tk_Qpj2lUyQu9zZxdqYdam2QbPunba66pRjbFVYIvgqVVV05bBg86WqjKZD1SVB81SDxvzoV14pTffczC1rlRr48tjdFCotdcnX32M3qbXr5PbcPZ4cze5nIUZA9qEVDCtCAFGKFEiIQzjJMOEMM0JCM45FgA5LHJKCpbhhKYF0JQXwJmAPKZ0jM6Gv7Wzm1b7Rq5s66ouUhKe4DjFkOKOSgYqc9Z7pwtZO1Mqt5WAZW9R9n5k70r2FiXIwWJ3eT5cGlv_vL6fT15-g7LOiw6mf8D_RXwCCiSALg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570690190</pqid></control><display><type>article</type><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</creator><creatorcontrib>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</creatorcontrib><description>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1612/1/012009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Density ; Kinetic equations ; Operators ; Physics ; probability representation ; quantizer-dequantizer operators ; Quantum mechanics ; Quantum theory ; quantum tomography ; qubit states ; Qubits (quantum computing)</subject><ispartof>Journal of physics. Conference series, 2020-08, Vol.1612 (1), p.12009</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</citedby><cites>FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1612/1/012009/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Chernega, Vladimir N</creatorcontrib><creatorcontrib>Man'ko, Olga V</creatorcontrib><creatorcontrib>Man'ko, Vladimir I</creatorcontrib><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</description><subject>Density</subject><subject>Kinetic equations</subject><subject>Operators</subject><subject>Physics</subject><subject>probability representation</subject><subject>quantizer-dequantizer operators</subject><subject>Quantum mechanics</subject><subject>Quantum theory</subject><subject>quantum tomography</subject><subject>qubit states</subject><subject>Qubits (quantum computing)</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKw0AQhhdRsFafwYB3QszOHpLNpVTrgYr1hJfLNtnQLU023U0u6tObEK0IgnMzA_PN_PAhdAr4ArAQESSMhDFP4whiIBFEGAjG6R4a7Tb7u1mIQ3Tk_Qpj2lUyQu9zZxdqYdam2QbPunba66pRjbFVYIvgqVVV05bBg86WqjKZD1SVB81SDxvzoV14pTffczC1rlRr48tjdFCotdcnX32M3qbXr5PbcPZ4cze5nIUZA9qEVDCtCAFGKFEiIQzjJMOEMM0JCM45FgA5LHJKCpbhhKYF0JQXwJmAPKZ0jM6Gv7Wzm1b7Rq5s66ouUhKe4DjFkOKOSgYqc9Z7pwtZO1Mqt5WAZW9R9n5k70r2FiXIwWJ3eT5cGlv_vL6fT15-g7LOiw6mf8D_RXwCCiSALg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chernega, Vladimir N</creator><creator>Man'ko, Olga V</creator><creator>Man'ko, Vladimir I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200801</creationdate><title>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</title><author>Chernega, Vladimir N ; Man'ko, Olga V ; Man'ko, Vladimir I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-384ea2214232a8724007c0224e52185550811d1bd32f4c0739f1395f15481d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Density</topic><topic>Kinetic equations</topic><topic>Operators</topic><topic>Physics</topic><topic>probability representation</topic><topic>quantizer-dequantizer operators</topic><topic>Quantum mechanics</topic><topic>Quantum theory</topic><topic>quantum tomography</topic><topic>qubit states</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernega, Vladimir N</creatorcontrib><creatorcontrib>Man'ko, Olga V</creatorcontrib><creatorcontrib>Man'ko, Vladimir I</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernega, Vladimir N</au><au>Man'ko, Olga V</au><au>Man'ko, Vladimir I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>1612</volume><issue>1</issue><spage>12009</spage><pages>12009-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A review of the approach where the states of quantum systems are identified with fair probability distributions is presented. The quantizer-dequantizer operators used to construct the invertible map of the density operators onto the probability distributions are applied to obtain the kinetic equations for probability distributions identified with the quantum system states. For qubit states, the von Neumann evolution equation for the density operator is explicitly given in the form of kinetic equation for the probability distribution. Simplest tomographic probability distributions describing the states of multimode quantum oscillator are constructed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1612/1/012009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-08, Vol.1612 (1), p.12009 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2570690190 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Density Kinetic equations Operators Physics probability representation quantizer-dequantizer operators Quantum mechanics Quantum theory quantum tomography qubit states Qubits (quantum computing) |
title | Probability Representation of Quantum Mechanics and the Quantizer-Dequantizer Formalism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20Representation%20of%20Quantum%20Mechanics%20and%20the%20Quantizer-Dequantizer%20Formalism&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Chernega,%20Vladimir%20N&rft.date=2020-08-01&rft.volume=1612&rft.issue=1&rft.spage=12009&rft.pages=12009-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1612/1/012009&rft_dat=%3Cproquest_cross%3E2570690190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570690190&rft_id=info:pmid/&rfr_iscdi=true |