Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean
In natural habitats, the diversity of anaerobic ammonia-oxidizing (anammox) bacteria could be affected by multiple environmental variables. In this study, we investigated the distribution of the anammox bacterial community in surface sediment from the Dongjiang River (riverine sediment, DJ) to the P...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology (London) 2021-10, Vol.30 (8), p.1743-1753 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 |
---|---|
container_issue | 8 |
container_start_page | 1743 |
container_title | Ecotoxicology (London) |
container_volume | 30 |
creator | Li, Yiben Hong, Yiguo Wu, Jiapeng Wang, Yu Ye, Fei |
description | In natural habitats, the diversity of anaerobic ammonia-oxidizing (anammox) bacteria could be affected by multiple environmental variables. In this study, we investigated the distribution of the anammox bacterial community in surface sediment from the Dongjiang River (riverine sediment, DJ) to the Pearl River Estuary (estuarine sediment, PRE) and then to the South China Sea (coastal sediment, SCS). The results revealed evident differences in the structural diversity of anammox bacteria in three different habitats.
Candidatus
Brocadia accounted for approximately 90% of the total anammox bacteria in DJ, conversely,
Ca
. Scalindua dominated in the SCS. Nevertheless,
Ca
. Scalindua,
Ca
. Brocadia and
Ca
. Kuenenia coexisted in the PRE. The qPCR results indicated that anammox bacterial 16S rRNA gene abundance ranged from 2.23 × 10
5
to 1.19 × 10
7
copies g
−1
of wet weight, but no significant correlation was found between the abundances and environmental variables (
p
> 0.05). The relative abundances of
Ca
. Brocadia gradually decreased with increasing salinity, and
Ca
. Scalindua showed the opposite trend, suggesting that salinity was a crucial factor in sculpturing the community composition of anammox bacteria in natural environments.
Ca
. Brocadia should be able to live in freshwater ecosystems, but it can also tolerate a certain level of salinity.
Ca
. Scalindua was halophilic anammox bacterium and exists only in saline environments.
Ca
. Kuenenia could adapt to a wide range of salinity and preferred to live in high DIN level conditions according to our search. The distribution pattern of anammox bacteria may be the result of microbial migration and long-term adaptation to salinity. |
doi_str_mv | 10.1007/s10646-020-02282-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570667429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713745587</galeid><sourcerecordid>A713745587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f22b7caed022a7830db2865bbf651f4a042e3bc2b348719e2bff21291a1944703</originalsourceid><addsrcrecordid>eNp9kctqHDEQRYVxwBPHP5CVwOu29epWa2mM8wBDFknWoqSWJjLd0ljSGDu7_Lk104bsTCEKLvdUqbgIfabkihIirwslgxg6wkh7bGRdf4I2tJe844TKU7QhauCdYoqdoY-lPBBClBRkg_793EENMOMnyAFMmEN9wU2qLkecPK5_HIYILicTLIZlSTFAl57DFP6GuMUGbLMeBti0LPt4wMHmVAoGXGAOR2WbYQouVuxzWnAOTy7jmnCyDuIn9MHDXNzFWz9Hv7_c_br91t3_-Pr99ua-s1zR2nnGjLTgpnYfyJGTybBx6I3xQ0-9ACKY48Yyw8UoqXLMeM8oUxSoEkISfo4u17m7nB73rlT9kPY5tpWa9ZIMgxRMNdfV6trC7HSIPtUMttXklmBTdD40_UZSLkXfj7IBbAWOR2fn9S6HBfKLpkQfstFrNrplo4_Z6L5BfIVKM8ety___8g71Cjnkk6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570667429</pqid></control><display><type>article</type><title>Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean</title><source>SpringerLink_现刊</source><creator>Li, Yiben ; Hong, Yiguo ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei</creator><creatorcontrib>Li, Yiben ; Hong, Yiguo ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei</creatorcontrib><description>In natural habitats, the diversity of anaerobic ammonia-oxidizing (anammox) bacteria could be affected by multiple environmental variables. In this study, we investigated the distribution of the anammox bacterial community in surface sediment from the Dongjiang River (riverine sediment, DJ) to the Pearl River Estuary (estuarine sediment, PRE) and then to the South China Sea (coastal sediment, SCS). The results revealed evident differences in the structural diversity of anammox bacteria in three different habitats.
Candidatus
Brocadia accounted for approximately 90% of the total anammox bacteria in DJ, conversely,
Ca
. Scalindua dominated in the SCS. Nevertheless,
Ca
. Scalindua,
Ca
. Brocadia and
Ca
. Kuenenia coexisted in the PRE. The qPCR results indicated that anammox bacterial 16S rRNA gene abundance ranged from 2.23 × 10
5
to 1.19 × 10
7
copies g
−1
of wet weight, but no significant correlation was found between the abundances and environmental variables (
p
> 0.05). The relative abundances of
Ca
. Brocadia gradually decreased with increasing salinity, and
Ca
. Scalindua showed the opposite trend, suggesting that salinity was a crucial factor in sculpturing the community composition of anammox bacteria in natural environments.
Ca
. Brocadia should be able to live in freshwater ecosystems, but it can also tolerate a certain level of salinity.
Ca
. Scalindua was halophilic anammox bacterium and exists only in saline environments.
Ca
. Kuenenia could adapt to a wide range of salinity and preferred to live in high DIN level conditions according to our search. The distribution pattern of anammox bacteria may be the result of microbial migration and long-term adaptation to salinity.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-020-02282-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abundance ; Ammonia ; Ammonia-oxidizing bacteria ; Aquatic ecosystems ; Bacteria ; Brackishwater environment ; Community composition ; Distribution ; Distribution patterns ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Estuaries ; Estuarine dynamics ; Freshwater ; Freshwater ecosystems ; Inland water environment ; Microorganisms ; Natural environment ; Oxidation ; Rivers ; RNA ; rRNA 16S ; S.I. : Commemorative Special Issue for Shu-Pei Cheng ; Saline environments ; Salinity ; Salinity effects ; Salinity gradients ; Sediment ; Sediments ; Sediments (Geology) ; Spatial variations ; Wet weight</subject><ispartof>Ecotoxicology (London), 2021-10, Vol.30 (8), p.1743-1753</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f22b7caed022a7830db2865bbf651f4a042e3bc2b348719e2bff21291a1944703</citedby><cites>FETCH-LOGICAL-c391t-f22b7caed022a7830db2865bbf651f4a042e3bc2b348719e2bff21291a1944703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-020-02282-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-020-02282-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Li, Yiben</creatorcontrib><creatorcontrib>Hong, Yiguo</creatorcontrib><creatorcontrib>Wu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><title>Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><description>In natural habitats, the diversity of anaerobic ammonia-oxidizing (anammox) bacteria could be affected by multiple environmental variables. In this study, we investigated the distribution of the anammox bacterial community in surface sediment from the Dongjiang River (riverine sediment, DJ) to the Pearl River Estuary (estuarine sediment, PRE) and then to the South China Sea (coastal sediment, SCS). The results revealed evident differences in the structural diversity of anammox bacteria in three different habitats.
Candidatus
Brocadia accounted for approximately 90% of the total anammox bacteria in DJ, conversely,
Ca
. Scalindua dominated in the SCS. Nevertheless,
Ca
. Scalindua,
Ca
. Brocadia and
Ca
. Kuenenia coexisted in the PRE. The qPCR results indicated that anammox bacterial 16S rRNA gene abundance ranged from 2.23 × 10
5
to 1.19 × 10
7
copies g
−1
of wet weight, but no significant correlation was found between the abundances and environmental variables (
p
> 0.05). The relative abundances of
Ca
. Brocadia gradually decreased with increasing salinity, and
Ca
. Scalindua showed the opposite trend, suggesting that salinity was a crucial factor in sculpturing the community composition of anammox bacteria in natural environments.
Ca
. Brocadia should be able to live in freshwater ecosystems, but it can also tolerate a certain level of salinity.
Ca
. Scalindua was halophilic anammox bacterium and exists only in saline environments.
Ca
. Kuenenia could adapt to a wide range of salinity and preferred to live in high DIN level conditions according to our search. The distribution pattern of anammox bacteria may be the result of microbial migration and long-term adaptation to salinity.</description><subject>Abundance</subject><subject>Ammonia</subject><subject>Ammonia-oxidizing bacteria</subject><subject>Aquatic ecosystems</subject><subject>Bacteria</subject><subject>Brackishwater environment</subject><subject>Community composition</subject><subject>Distribution</subject><subject>Distribution patterns</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Inland water environment</subject><subject>Microorganisms</subject><subject>Natural environment</subject><subject>Oxidation</subject><subject>Rivers</subject><subject>RNA</subject><subject>rRNA 16S</subject><subject>S.I. : Commemorative Special Issue for Shu-Pei Cheng</subject><subject>Saline environments</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity gradients</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Sediments (Geology)</subject><subject>Spatial variations</subject><subject>Wet weight</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctqHDEQRYVxwBPHP5CVwOu29epWa2mM8wBDFknWoqSWJjLd0ljSGDu7_Lk104bsTCEKLvdUqbgIfabkihIirwslgxg6wkh7bGRdf4I2tJe844TKU7QhauCdYoqdoY-lPBBClBRkg_793EENMOMnyAFMmEN9wU2qLkecPK5_HIYILicTLIZlSTFAl57DFP6GuMUGbLMeBti0LPt4wMHmVAoGXGAOR2WbYQouVuxzWnAOTy7jmnCyDuIn9MHDXNzFWz9Hv7_c_br91t3_-Pr99ua-s1zR2nnGjLTgpnYfyJGTybBx6I3xQ0-9ACKY48Yyw8UoqXLMeM8oUxSoEkISfo4u17m7nB73rlT9kPY5tpWa9ZIMgxRMNdfV6trC7HSIPtUMttXklmBTdD40_UZSLkXfj7IBbAWOR2fn9S6HBfKLpkQfstFrNrplo4_Z6L5BfIVKM8ety___8g71Cjnkk6Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Yiben</creator><creator>Hong, Yiguo</creator><creator>Wu, Jiapeng</creator><creator>Wang, Yu</creator><creator>Ye, Fei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20211001</creationdate><title>Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean</title><author>Li, Yiben ; Hong, Yiguo ; Wu, Jiapeng ; Wang, Yu ; Ye, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f22b7caed022a7830db2865bbf651f4a042e3bc2b348719e2bff21291a1944703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Ammonia</topic><topic>Ammonia-oxidizing bacteria</topic><topic>Aquatic ecosystems</topic><topic>Bacteria</topic><topic>Brackishwater environment</topic><topic>Community composition</topic><topic>Distribution</topic><topic>Distribution patterns</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Inland water environment</topic><topic>Microorganisms</topic><topic>Natural environment</topic><topic>Oxidation</topic><topic>Rivers</topic><topic>RNA</topic><topic>rRNA 16S</topic><topic>S.I. : Commemorative Special Issue for Shu-Pei Cheng</topic><topic>Saline environments</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity gradients</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Sediments (Geology)</topic><topic>Spatial variations</topic><topic>Wet weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiben</creatorcontrib><creatorcontrib>Hong, Yiguo</creatorcontrib><creatorcontrib>Wu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Ye, Fei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiben</au><au>Hong, Yiguo</au><au>Wu, Jiapeng</au><au>Wang, Yu</au><au>Ye, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>30</volume><issue>8</issue><spage>1743</spage><epage>1753</epage><pages>1743-1753</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><abstract>In natural habitats, the diversity of anaerobic ammonia-oxidizing (anammox) bacteria could be affected by multiple environmental variables. In this study, we investigated the distribution of the anammox bacterial community in surface sediment from the Dongjiang River (riverine sediment, DJ) to the Pearl River Estuary (estuarine sediment, PRE) and then to the South China Sea (coastal sediment, SCS). The results revealed evident differences in the structural diversity of anammox bacteria in three different habitats.
Candidatus
Brocadia accounted for approximately 90% of the total anammox bacteria in DJ, conversely,
Ca
. Scalindua dominated in the SCS. Nevertheless,
Ca
. Scalindua,
Ca
. Brocadia and
Ca
. Kuenenia coexisted in the PRE. The qPCR results indicated that anammox bacterial 16S rRNA gene abundance ranged from 2.23 × 10
5
to 1.19 × 10
7
copies g
−1
of wet weight, but no significant correlation was found between the abundances and environmental variables (
p
> 0.05). The relative abundances of
Ca
. Brocadia gradually decreased with increasing salinity, and
Ca
. Scalindua showed the opposite trend, suggesting that salinity was a crucial factor in sculpturing the community composition of anammox bacteria in natural environments.
Ca
. Brocadia should be able to live in freshwater ecosystems, but it can also tolerate a certain level of salinity.
Ca
. Scalindua was halophilic anammox bacterium and exists only in saline environments.
Ca
. Kuenenia could adapt to a wide range of salinity and preferred to live in high DIN level conditions according to our search. The distribution pattern of anammox bacteria may be the result of microbial migration and long-term adaptation to salinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10646-020-02282-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9292 |
ispartof | Ecotoxicology (London), 2021-10, Vol.30 (8), p.1743-1753 |
issn | 0963-9292 1573-3017 |
language | eng |
recordid | cdi_proquest_journals_2570667429 |
source | SpringerLink_现刊 |
subjects | Abundance Ammonia Ammonia-oxidizing bacteria Aquatic ecosystems Bacteria Brackishwater environment Community composition Distribution Distribution patterns Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Estuaries Estuarine dynamics Freshwater Freshwater ecosystems Inland water environment Microorganisms Natural environment Oxidation Rivers RNA rRNA 16S S.I. : Commemorative Special Issue for Shu-Pei Cheng Saline environments Salinity Salinity effects Salinity gradients Sediment Sediments Sediments (Geology) Spatial variations Wet weight |
title | Spatial variability pattern of the anaerobic ammonia-oxidizing bacterial community across a salinity gradient from river to ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20variability%20pattern%20of%20the%20anaerobic%20ammonia-oxidizing%20bacterial%20community%20across%20a%20salinity%20gradient%20from%20river%20to%20ocean&rft.jtitle=Ecotoxicology%20(London)&rft.au=Li,%20Yiben&rft.date=2021-10-01&rft.volume=30&rft.issue=8&rft.spage=1743&rft.epage=1753&rft.pages=1743-1753&rft.issn=0963-9292&rft.eissn=1573-3017&rft_id=info:doi/10.1007/s10646-020-02282-5&rft_dat=%3Cgale_proqu%3EA713745587%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570667429&rft_id=info:pmid/&rft_galeid=A713745587&rfr_iscdi=true |