Sampled-Data Nash Equilibria in Differential Games with Impulse Controls

We study a class of deterministic two-player nonzero-sum differential games where one player uses piecewise-continuous controls to affect the continuously evolving state, while the other player uses impulse controls at certain discrete instants of time to shift the state from one level to another. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2021-09, Vol.190 (3), p.999-1022
Hauptverfasser: Sadana, Utsav, Reddy, Puduru Viswanadha, Başar, Tamer, Zaccour, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 3
container_start_page 999
container_title Journal of optimization theory and applications
container_volume 190
creator Sadana, Utsav
Reddy, Puduru Viswanadha
Başar, Tamer
Zaccour, Georges
description We study a class of deterministic two-player nonzero-sum differential games where one player uses piecewise-continuous controls to affect the continuously evolving state, while the other player uses impulse controls at certain discrete instants of time to shift the state from one level to another. The state measurements are made at some given instants of time, and players determine their strategies using the last measured state value. We provide necessary and sufficient conditions for the existence of sampled-data Nash equilibrium for a general class of differential games with impulse controls. We specialize our results to a scalar linear-quadratic differential game and show that the equilibrium impulse timing can be obtained by determining a fixed point of a Riccati-like system of differential equations with jumps coupled with a system of nonlinear equality constraints. By reformulating the problem as a constrained nonlinear optimization problem, we compute the equilibrium timing, and level of impulses. We find that the equilibrium piecewise continuous control and impulse control are linear functions of the last measured state value. Using a numerical example, we illustrate our results.
doi_str_mv 10.1007/s10957-021-01920-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570658225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570658225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d78401dc64d91d24ec2f7f89fd25054a8cae25cc810f7044c5d9c096ebc21c43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlkzTJUtraFkQX6jqkmcSmzFeTGcR_72gFd64eXO65Dw5C1xRuKYC8yxS0kAQYJUA1AwInaEKFLAhTUp2iCQBjpGCFPkcXOe8BQCvJJ2j9Yuuu8iVZ2N7iJ5t3eHkYYhW3KVocG7yIIfjkmz7aCq9s7TP-iP0Ob-puqLLH87bpU1vlS3QW7Bhc_d4pentYvs7X5PF5tZnfPxJXUN0TWkrFgZZuxktNS8a9Y0EGpUPJBAhulbOeCecUhSCBcydK7UDP_NYx6ngxRTfH3S61h8Hn3uzbITXjS8OEhJlQjImxxY4tl9qckw-mS7G26dNQMN_GzNGYGY2ZH2MGRqg4QnksN-8-_U3_Q30BTrJtgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570658225</pqid></control><display><type>article</type><title>Sampled-Data Nash Equilibria in Differential Games with Impulse Controls</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sadana, Utsav ; Reddy, Puduru Viswanadha ; Başar, Tamer ; Zaccour, Georges</creator><creatorcontrib>Sadana, Utsav ; Reddy, Puduru Viswanadha ; Başar, Tamer ; Zaccour, Georges</creatorcontrib><description>We study a class of deterministic two-player nonzero-sum differential games where one player uses piecewise-continuous controls to affect the continuously evolving state, while the other player uses impulse controls at certain discrete instants of time to shift the state from one level to another. The state measurements are made at some given instants of time, and players determine their strategies using the last measured state value. We provide necessary and sufficient conditions for the existence of sampled-data Nash equilibrium for a general class of differential games with impulse controls. We specialize our results to a scalar linear-quadratic differential game and show that the equilibrium impulse timing can be obtained by determining a fixed point of a Riccati-like system of differential equations with jumps coupled with a system of nonlinear equality constraints. By reformulating the problem as a constrained nonlinear optimization problem, we compute the equilibrium timing, and level of impulses. We find that the equilibrium piecewise continuous control and impulse control are linear functions of the last measured state value. Using a numerical example, we illustrate our results.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-021-01920-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Constraints ; Differential equations ; Differential games ; Engineering ; Equilibrium ; Game theory ; Linear functions ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2021-09, Vol.190 (3), p.999-1022</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d78401dc64d91d24ec2f7f89fd25054a8cae25cc810f7044c5d9c096ebc21c43</citedby><cites>FETCH-LOGICAL-c319t-1d78401dc64d91d24ec2f7f89fd25054a8cae25cc810f7044c5d9c096ebc21c43</cites><orcidid>0000-0003-4406-7875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-021-01920-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-021-01920-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sadana, Utsav</creatorcontrib><creatorcontrib>Reddy, Puduru Viswanadha</creatorcontrib><creatorcontrib>Başar, Tamer</creatorcontrib><creatorcontrib>Zaccour, Georges</creatorcontrib><title>Sampled-Data Nash Equilibria in Differential Games with Impulse Controls</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We study a class of deterministic two-player nonzero-sum differential games where one player uses piecewise-continuous controls to affect the continuously evolving state, while the other player uses impulse controls at certain discrete instants of time to shift the state from one level to another. The state measurements are made at some given instants of time, and players determine their strategies using the last measured state value. We provide necessary and sufficient conditions for the existence of sampled-data Nash equilibrium for a general class of differential games with impulse controls. We specialize our results to a scalar linear-quadratic differential game and show that the equilibrium impulse timing can be obtained by determining a fixed point of a Riccati-like system of differential equations with jumps coupled with a system of nonlinear equality constraints. By reformulating the problem as a constrained nonlinear optimization problem, we compute the equilibrium timing, and level of impulses. We find that the equilibrium piecewise continuous control and impulse control are linear functions of the last measured state value. Using a numerical example, we illustrate our results.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Constraints</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Linear functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlkzTJUtraFkQX6jqkmcSmzFeTGcR_72gFd64eXO65Dw5C1xRuKYC8yxS0kAQYJUA1AwInaEKFLAhTUp2iCQBjpGCFPkcXOe8BQCvJJ2j9Yuuu8iVZ2N7iJ5t3eHkYYhW3KVocG7yIIfjkmz7aCq9s7TP-iP0Ob-puqLLH87bpU1vlS3QW7Bhc_d4pentYvs7X5PF5tZnfPxJXUN0TWkrFgZZuxktNS8a9Y0EGpUPJBAhulbOeCecUhSCBcydK7UDP_NYx6ngxRTfH3S61h8Hn3uzbITXjS8OEhJlQjImxxY4tl9qckw-mS7G26dNQMN_GzNGYGY2ZH2MGRqg4QnksN-8-_U3_Q30BTrJtgg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sadana, Utsav</creator><creator>Reddy, Puduru Viswanadha</creator><creator>Başar, Tamer</creator><creator>Zaccour, Georges</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4406-7875</orcidid></search><sort><creationdate>20210901</creationdate><title>Sampled-Data Nash Equilibria in Differential Games with Impulse Controls</title><author>Sadana, Utsav ; Reddy, Puduru Viswanadha ; Başar, Tamer ; Zaccour, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d78401dc64d91d24ec2f7f89fd25054a8cae25cc810f7044c5d9c096ebc21c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Constraints</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Linear functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadana, Utsav</creatorcontrib><creatorcontrib>Reddy, Puduru Viswanadha</creatorcontrib><creatorcontrib>Başar, Tamer</creatorcontrib><creatorcontrib>Zaccour, Georges</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadana, Utsav</au><au>Reddy, Puduru Viswanadha</au><au>Başar, Tamer</au><au>Zaccour, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampled-Data Nash Equilibria in Differential Games with Impulse Controls</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>190</volume><issue>3</issue><spage>999</spage><epage>1022</epage><pages>999-1022</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We study a class of deterministic two-player nonzero-sum differential games where one player uses piecewise-continuous controls to affect the continuously evolving state, while the other player uses impulse controls at certain discrete instants of time to shift the state from one level to another. The state measurements are made at some given instants of time, and players determine their strategies using the last measured state value. We provide necessary and sufficient conditions for the existence of sampled-data Nash equilibrium for a general class of differential games with impulse controls. We specialize our results to a scalar linear-quadratic differential game and show that the equilibrium impulse timing can be obtained by determining a fixed point of a Riccati-like system of differential equations with jumps coupled with a system of nonlinear equality constraints. By reformulating the problem as a constrained nonlinear optimization problem, we compute the equilibrium timing, and level of impulses. We find that the equilibrium piecewise continuous control and impulse control are linear functions of the last measured state value. Using a numerical example, we illustrate our results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-021-01920-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-4406-7875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2021-09, Vol.190 (3), p.999-1022
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2570658225
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Constraints
Differential equations
Differential games
Engineering
Equilibrium
Game theory
Linear functions
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
title Sampled-Data Nash Equilibria in Differential Games with Impulse Controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampled-Data%20Nash%20Equilibria%20in%20Differential%20Games%20with%20Impulse%20Controls&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Sadana,%20Utsav&rft.date=2021-09-01&rft.volume=190&rft.issue=3&rft.spage=999&rft.epage=1022&rft.pages=999-1022&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-021-01920-0&rft_dat=%3Cproquest_cross%3E2570658225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570658225&rft_id=info:pmid/&rfr_iscdi=true