Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations
A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2021-10, Vol.81 (2), p.293-321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 321 |
---|---|
container_issue | 2 |
container_start_page | 293 |
container_title | Journal of global optimization |
container_volume | 81 |
creator | Gondzio, Jacek Yıldırım, E. Alper |
description | A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude. |
doi_str_mv | 10.1007/s10898-021-01017-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570656800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718397601</galeid><sourcerecordid>A718397601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVJIJM0fyArQddO75XHlrQMQ5sUAt20a6GXBwVbmkh2mPn3Vcct2QUtLojznfs4hNwh3CMA_1oQhBQNMGwAAXlz-kQ22PG2YRL7C7IBybqmA8Arcl3KCwBI0bENmR7HZPRISxqXOaRYaBpoTNGm-OaPtMw6Op0dfV20y3oOlh5y2mc9FfoWNJ3C0Tsa4uz3PtMxRK_zf8UU4p5mP6Q8LaM-m38ml4Mei7_9V2_I7-_ffu2emuefjz92D8-N3QKbG8HRuK2RLWsNd8BtJ13r0RgBphMePcph6wxaaTi0nDFhPWe9HfQgjEDR3pAvq28d5XXxZVYvacmxtlSs49B3vQCoqvtVtdejVyEOac7a1uf8FOoB_BDq_wOvhpL3gBVgK2BzKqWupg45TDqfFIL6m4Nac1A1B3XOQZ0q1K5QqeJYz_Q-ywfUH6a0jh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570656800</pqid></control><display><type>article</type><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><source>SpringerLink Journals</source><creator>Gondzio, Jacek ; Yıldırım, E. Alper</creator><creatorcontrib>Gondzio, Jacek ; Yıldırım, E. Alper</creatorcontrib><description>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-01017-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Integer programming ; Investment analysis ; Linear programming ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Quadratic forms ; Real Functions ; Tightness</subject><ispartof>Journal of global optimization, 2021-10, Vol.81 (2), p.293-321</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</citedby><cites>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</cites><orcidid>0000-0003-4141-3189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-021-01017-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-021-01017-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Yıldırım, E. Alper</creatorcontrib><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</description><subject>Computer Science</subject><subject>Integer programming</subject><subject>Investment analysis</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Quadratic forms</subject><subject>Real Functions</subject><subject>Tightness</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtr3DAUhUVJIJM0fyArQddO75XHlrQMQ5sUAt20a6GXBwVbmkh2mPn3Vcct2QUtLojznfs4hNwh3CMA_1oQhBQNMGwAAXlz-kQ22PG2YRL7C7IBybqmA8Arcl3KCwBI0bENmR7HZPRISxqXOaRYaBpoTNGm-OaPtMw6Op0dfV20y3oOlh5y2mc9FfoWNJ3C0Tsa4uz3PtMxRK_zf8UU4p5mP6Q8LaM-m38ml4Mei7_9V2_I7-_ffu2emuefjz92D8-N3QKbG8HRuK2RLWsNd8BtJ13r0RgBphMePcph6wxaaTi0nDFhPWe9HfQgjEDR3pAvq28d5XXxZVYvacmxtlSs49B3vQCoqvtVtdejVyEOac7a1uf8FOoB_BDq_wOvhpL3gBVgK2BzKqWupg45TDqfFIL6m4Nac1A1B3XOQZ0q1K5QqeJYz_Q-ywfUH6a0jh0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Gondzio, Jacek</creator><creator>Yıldırım, E. Alper</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4141-3189</orcidid></search><sort><creationdate>20211001</creationdate><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><author>Gondzio, Jacek ; Yıldırım, E. Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Integer programming</topic><topic>Investment analysis</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Quadratic forms</topic><topic>Real Functions</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Yıldırım, E. Alper</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gondzio, Jacek</au><au>Yıldırım, E. Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>81</volume><issue>2</issue><spage>293</spage><epage>321</epage><pages>293-321</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-01017-y</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4141-3189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2021-10, Vol.81 (2), p.293-321 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2570656800 |
source | SpringerLink Journals |
subjects | Computer Science Integer programming Investment analysis Linear programming Mathematics Mathematics and Statistics Mixed integer Operations Research/Decision Theory Optimization Quadratic forms Real Functions Tightness |
title | Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20solutions%20of%20nonconvex%20standard%20quadratic%20programs%20via%20mixed%20integer%20linear%20programming%20reformulations&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Gondzio,%20Jacek&rft.date=2021-10-01&rft.volume=81&rft.issue=2&rft.spage=293&rft.epage=321&rft.pages=293-321&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-01017-y&rft_dat=%3Cgale_proqu%3EA718397601%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570656800&rft_id=info:pmid/&rft_galeid=A718397601&rfr_iscdi=true |