Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations

A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2021-10, Vol.81 (2), p.293-321
Hauptverfasser: Gondzio, Jacek, Yıldırım, E. Alper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 2
container_start_page 293
container_title Journal of global optimization
container_volume 81
creator Gondzio, Jacek
Yıldırım, E. Alper
description A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.
doi_str_mv 10.1007/s10898-021-01017-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570656800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718397601</galeid><sourcerecordid>A718397601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVJIJM0fyArQddO75XHlrQMQ5sUAt20a6GXBwVbmkh2mPn3Vcct2QUtLojznfs4hNwh3CMA_1oQhBQNMGwAAXlz-kQ22PG2YRL7C7IBybqmA8Arcl3KCwBI0bENmR7HZPRISxqXOaRYaBpoTNGm-OaPtMw6Op0dfV20y3oOlh5y2mc9FfoWNJ3C0Tsa4uz3PtMxRK_zf8UU4p5mP6Q8LaM-m38ml4Mei7_9V2_I7-_ffu2emuefjz92D8-N3QKbG8HRuK2RLWsNd8BtJ13r0RgBphMePcph6wxaaTi0nDFhPWe9HfQgjEDR3pAvq28d5XXxZVYvacmxtlSs49B3vQCoqvtVtdejVyEOac7a1uf8FOoB_BDq_wOvhpL3gBVgK2BzKqWupg45TDqfFIL6m4Nac1A1B3XOQZ0q1K5QqeJYz_Q-ywfUH6a0jh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570656800</pqid></control><display><type>article</type><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><source>SpringerLink Journals</source><creator>Gondzio, Jacek ; Yıldırım, E. Alper</creator><creatorcontrib>Gondzio, Jacek ; Yıldırım, E. Alper</creatorcontrib><description>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-01017-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Integer programming ; Investment analysis ; Linear programming ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Quadratic forms ; Real Functions ; Tightness</subject><ispartof>Journal of global optimization, 2021-10, Vol.81 (2), p.293-321</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</citedby><cites>FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</cites><orcidid>0000-0003-4141-3189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-021-01017-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-021-01017-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Yıldırım, E. Alper</creatorcontrib><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</description><subject>Computer Science</subject><subject>Integer programming</subject><subject>Investment analysis</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Quadratic forms</subject><subject>Real Functions</subject><subject>Tightness</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtr3DAUhUVJIJM0fyArQddO75XHlrQMQ5sUAt20a6GXBwVbmkh2mPn3Vcct2QUtLojznfs4hNwh3CMA_1oQhBQNMGwAAXlz-kQ22PG2YRL7C7IBybqmA8Arcl3KCwBI0bENmR7HZPRISxqXOaRYaBpoTNGm-OaPtMw6Op0dfV20y3oOlh5y2mc9FfoWNJ3C0Tsa4uz3PtMxRK_zf8UU4p5mP6Q8LaM-m38ml4Mei7_9V2_I7-_ffu2emuefjz92D8-N3QKbG8HRuK2RLWsNd8BtJ13r0RgBphMePcph6wxaaTi0nDFhPWe9HfQgjEDR3pAvq28d5XXxZVYvacmxtlSs49B3vQCoqvtVtdejVyEOac7a1uf8FOoB_BDq_wOvhpL3gBVgK2BzKqWupg45TDqfFIL6m4Nac1A1B3XOQZ0q1K5QqeJYz_Q-ywfUH6a0jh0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Gondzio, Jacek</creator><creator>Yıldırım, E. Alper</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4141-3189</orcidid></search><sort><creationdate>20211001</creationdate><title>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</title><author>Gondzio, Jacek ; Yıldırım, E. Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-871bd4b9323b7d07c59d3e1bb80b58e1e19f4db1c9b7037228ce726cfaf8b8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Integer programming</topic><topic>Investment analysis</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Quadratic forms</topic><topic>Real Functions</topic><topic>Tightness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gondzio, Jacek</creatorcontrib><creatorcontrib>Yıldırım, E. Alper</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gondzio, Jacek</au><au>Yıldırım, E. Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>81</volume><issue>2</issue><spage>293</spage><epage>321</epage><pages>293-321</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>A standard quadratic program is an optimization problem that consists of minimizing a (nonconvex) quadratic form over the unit simplex. We focus on reformulating a standard quadratic program as a mixed integer linear programming problem. We propose two alternative formulations. Our first formulation is based on casting a standard quadratic program as a linear program with complementarity constraints. We then employ binary variables to linearize the complementarity constraints. For the second formulation, we first derive an overestimating function of the objective function and establish its tightness at any global minimizer. We then linearize the overestimating function using binary variables and obtain our second formulation. For both formulations, we propose a set of valid inequalities. Our extensive computational results illustrate that the proposed mixed integer linear programming reformulations significantly outperform other global solution approaches. On larger instances, we usually observe improvements of several orders of magnitude.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-01017-y</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4141-3189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2021-10, Vol.81 (2), p.293-321
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_2570656800
source SpringerLink Journals
subjects Computer Science
Integer programming
Investment analysis
Linear programming
Mathematics
Mathematics and Statistics
Mixed integer
Operations Research/Decision Theory
Optimization
Quadratic forms
Real Functions
Tightness
title Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20solutions%20of%20nonconvex%20standard%20quadratic%20programs%20via%20mixed%20integer%20linear%20programming%20reformulations&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Gondzio,%20Jacek&rft.date=2021-10-01&rft.volume=81&rft.issue=2&rft.spage=293&rft.epage=321&rft.pages=293-321&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-01017-y&rft_dat=%3Cgale_proqu%3EA718397601%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570656800&rft_id=info:pmid/&rft_galeid=A718397601&rfr_iscdi=true