Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge

In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-07, Vol.1597 (1), p.12020
Hauptverfasser: Kudenatti, Ramesh B., Vanitha, V. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12020
container_title Journal of physics. Conference series
container_volume 1597
creator Kudenatti, Ramesh B.
Vanitha, V. R.
description In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.
doi_str_mv 10.1088/1742-6596/1597/1/012020
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2570566790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570566790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</originalsourceid><addsrcrecordid>eNqFkN1KxDAQRosouK4-gwHvhNpJ0jbt5bL4y4qCeh3Splm6tE1NWmvf3pTKiiCYiyQw55tMjuedY7jCkCQBZiHx4yiNAxylLMABYAIEDrzFvnK4vyfJsXdi7Q6AusUW3nD9KfIOiUailR3rttNdmSOrq74rdYO0QgLZrhByRN2gkSzrorGuIiqU6b6RwoyoEmNhZvSxzI1udSUMUlVfSrfrAbXCuidQrT_KZouGQm6LU-9IicoWZ9_n0nu7uX5d3_mbp9v79Wrj54SF4EdRTmSKkwyHkuZYSAIqphgYVRlLFUSQShkKyRIcMwLSgXGW0AQzKkEqQZfexdy3Nfq9L2zHd7o3bnzLScQgimOWgqPYTLnprTWF4q0pa_c3joFPlvnkj08u-WSZYz5bdkk6J0vd_rT-P3X5R-rhef3yG-StVPQLgFyM4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570566790</pqid></control><display><type>article</type><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudenatti, Ramesh B. ; Vanitha, V. R.</creator><creatorcontrib>Kudenatti, Ramesh B. ; Vanitha, V. R.</creatorcontrib><description>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1597/1/012020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic methods ; Asymptotic solution ; Boundary layer flow ; Boundary value problems ; Computational fluid dynamics ; Exact solution ; Exact solutions ; Fluid flow ; Incompressible flow ; Laminar Boundary layer ; Micropolar fluids ; Nonlinear differential equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Physics ; Similarity transformations ; Two dimensional boundary layer ; Two dimensional flow ; Two dimensional models ; Velocity distribution ; Wall shear stresses ; Wedges</subject><ispartof>Journal of physics. Conference series, 2020-07, Vol.1597 (1), p.12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1597/1/012020/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Vanitha, V. R.</creatorcontrib><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</description><subject>Asymptotic methods</subject><subject>Asymptotic solution</subject><subject>Boundary layer flow</subject><subject>Boundary value problems</subject><subject>Computational fluid dynamics</subject><subject>Exact solution</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Laminar Boundary layer</subject><subject>Micropolar fluids</subject><subject>Nonlinear differential equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Similarity transformations</subject><subject>Two dimensional boundary layer</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><subject>Wall shear stresses</subject><subject>Wedges</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN1KxDAQRosouK4-gwHvhNpJ0jbt5bL4y4qCeh3Splm6tE1NWmvf3pTKiiCYiyQw55tMjuedY7jCkCQBZiHx4yiNAxylLMABYAIEDrzFvnK4vyfJsXdi7Q6AusUW3nD9KfIOiUailR3rttNdmSOrq74rdYO0QgLZrhByRN2gkSzrorGuIiqU6b6RwoyoEmNhZvSxzI1udSUMUlVfSrfrAbXCuidQrT_KZouGQm6LU-9IicoWZ9_n0nu7uX5d3_mbp9v79Wrj54SF4EdRTmSKkwyHkuZYSAIqphgYVRlLFUSQShkKyRIcMwLSgXGW0AQzKkEqQZfexdy3Nfq9L2zHd7o3bnzLScQgimOWgqPYTLnprTWF4q0pa_c3joFPlvnkj08u-WSZYz5bdkk6J0vd_rT-P3X5R-rhef3yG-StVPQLgFyM4A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kudenatti, Ramesh B.</creator><creator>Vanitha, V. R.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200701</creationdate><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><author>Kudenatti, Ramesh B. ; Vanitha, V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic solution</topic><topic>Boundary layer flow</topic><topic>Boundary value problems</topic><topic>Computational fluid dynamics</topic><topic>Exact solution</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Laminar Boundary layer</topic><topic>Micropolar fluids</topic><topic>Nonlinear differential equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Similarity transformations</topic><topic>Two dimensional boundary layer</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><topic>Wall shear stresses</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Vanitha, V. R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudenatti, Ramesh B.</au><au>Vanitha, V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>1597</volume><issue>1</issue><spage>12020</spage><pages>12020-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1597/1/012020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-07, Vol.1597 (1), p.12020
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2570566790
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymptotic methods
Asymptotic solution
Boundary layer flow
Boundary value problems
Computational fluid dynamics
Exact solution
Exact solutions
Fluid flow
Incompressible flow
Laminar Boundary layer
Micropolar fluids
Nonlinear differential equations
Ordinary differential equations
Parameters
Partial differential equations
Physical properties
Physics
Similarity transformations
Two dimensional boundary layer
Two dimensional flow
Two dimensional models
Velocity distribution
Wall shear stresses
Wedges
title Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20Asymptotic%20solution%20of%20a%20steady%20two%20dimensional%20boundary%20layer%20of%20a%20Micropolar%20fluid%20flow%20past%20a%20moving%20wedge&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kudenatti,%20Ramesh%20B.&rft.date=2020-07-01&rft.volume=1597&rft.issue=1&rft.spage=12020&rft.pages=12020-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1597/1/012020&rft_dat=%3Cproquest_iop_j%3E2570566790%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570566790&rft_id=info:pmid/&rfr_iscdi=true