Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge
In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-07, Vol.1597 (1), p.12020 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12020 |
container_title | Journal of physics. Conference series |
container_volume | 1597 |
creator | Kudenatti, Ramesh B. Vanitha, V. R. |
description | In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters. |
doi_str_mv | 10.1088/1742-6596/1597/1/012020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2570566790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570566790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</originalsourceid><addsrcrecordid>eNqFkN1KxDAQRosouK4-gwHvhNpJ0jbt5bL4y4qCeh3Splm6tE1NWmvf3pTKiiCYiyQw55tMjuedY7jCkCQBZiHx4yiNAxylLMABYAIEDrzFvnK4vyfJsXdi7Q6AusUW3nD9KfIOiUailR3rttNdmSOrq74rdYO0QgLZrhByRN2gkSzrorGuIiqU6b6RwoyoEmNhZvSxzI1udSUMUlVfSrfrAbXCuidQrT_KZouGQm6LU-9IicoWZ9_n0nu7uX5d3_mbp9v79Wrj54SF4EdRTmSKkwyHkuZYSAIqphgYVRlLFUSQShkKyRIcMwLSgXGW0AQzKkEqQZfexdy3Nfq9L2zHd7o3bnzLScQgimOWgqPYTLnprTWF4q0pa_c3joFPlvnkj08u-WSZYz5bdkk6J0vd_rT-P3X5R-rhef3yG-StVPQLgFyM4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570566790</pqid></control><display><type>article</type><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudenatti, Ramesh B. ; Vanitha, V. R.</creator><creatorcontrib>Kudenatti, Ramesh B. ; Vanitha, V. R.</creatorcontrib><description>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1597/1/012020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic methods ; Asymptotic solution ; Boundary layer flow ; Boundary value problems ; Computational fluid dynamics ; Exact solution ; Exact solutions ; Fluid flow ; Incompressible flow ; Laminar Boundary layer ; Micropolar fluids ; Nonlinear differential equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Physics ; Similarity transformations ; Two dimensional boundary layer ; Two dimensional flow ; Two dimensional models ; Velocity distribution ; Wall shear stresses ; Wedges</subject><ispartof>Journal of physics. Conference series, 2020-07, Vol.1597 (1), p.12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1597/1/012020/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Vanitha, V. R.</creatorcontrib><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</description><subject>Asymptotic methods</subject><subject>Asymptotic solution</subject><subject>Boundary layer flow</subject><subject>Boundary value problems</subject><subject>Computational fluid dynamics</subject><subject>Exact solution</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Laminar Boundary layer</subject><subject>Micropolar fluids</subject><subject>Nonlinear differential equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Similarity transformations</subject><subject>Two dimensional boundary layer</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><subject>Velocity distribution</subject><subject>Wall shear stresses</subject><subject>Wedges</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN1KxDAQRosouK4-gwHvhNpJ0jbt5bL4y4qCeh3Splm6tE1NWmvf3pTKiiCYiyQw55tMjuedY7jCkCQBZiHx4yiNAxylLMABYAIEDrzFvnK4vyfJsXdi7Q6AusUW3nD9KfIOiUailR3rttNdmSOrq74rdYO0QgLZrhByRN2gkSzrorGuIiqU6b6RwoyoEmNhZvSxzI1udSUMUlVfSrfrAbXCuidQrT_KZouGQm6LU-9IicoWZ9_n0nu7uX5d3_mbp9v79Wrj54SF4EdRTmSKkwyHkuZYSAIqphgYVRlLFUSQShkKyRIcMwLSgXGW0AQzKkEqQZfexdy3Nfq9L2zHd7o3bnzLScQgimOWgqPYTLnprTWF4q0pa_c3joFPlvnkj08u-WSZYz5bdkk6J0vd_rT-P3X5R-rhef3yG-StVPQLgFyM4A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kudenatti, Ramesh B.</creator><creator>Vanitha, V. R.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200701</creationdate><title>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</title><author>Kudenatti, Ramesh B. ; Vanitha, V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2740-55c2d918b14d3c1ad20f631073fb79f0509dd4ad7816720d8b16b838173d0dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic solution</topic><topic>Boundary layer flow</topic><topic>Boundary value problems</topic><topic>Computational fluid dynamics</topic><topic>Exact solution</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Laminar Boundary layer</topic><topic>Micropolar fluids</topic><topic>Nonlinear differential equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Similarity transformations</topic><topic>Two dimensional boundary layer</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><topic>Velocity distribution</topic><topic>Wall shear stresses</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudenatti, Ramesh B.</creatorcontrib><creatorcontrib>Vanitha, V. R.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudenatti, Ramesh B.</au><au>Vanitha, V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>1597</volume><issue>1</issue><spage>12020</spage><pages>12020-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, we propose an analytic solution of a boundary value problem which models a steady, laminar, two dimensional, boundary layer flow of an incompressible and viscous micropolar fluid over a moving wedge. The governing non-linear partial differential equations are converted into highly non-linear ordinary differential equations using similarity transformations. An analytical exact solution obtained for particular values of parameters are then extended to obtain an exact solution for more general values of the parameters involved. We also propose asymptotic solution of the Micropolar boundary layer flow. The results thus obtained are compared with those of direct numerical solutions, which show a good agreement. The results are discussed in terms of velocity profiles and wall shear stresses for various physical parameters.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1597/1/012020</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-07, Vol.1597 (1), p.12020 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2570566790 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Asymptotic methods Asymptotic solution Boundary layer flow Boundary value problems Computational fluid dynamics Exact solution Exact solutions Fluid flow Incompressible flow Laminar Boundary layer Micropolar fluids Nonlinear differential equations Ordinary differential equations Parameters Partial differential equations Physical properties Physics Similarity transformations Two dimensional boundary layer Two dimensional flow Two dimensional models Velocity distribution Wall shear stresses Wedges |
title | Exact and Asymptotic solution of a steady two dimensional boundary layer of a Micropolar fluid flow past a moving wedge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20Asymptotic%20solution%20of%20a%20steady%20two%20dimensional%20boundary%20layer%20of%20a%20Micropolar%20fluid%20flow%20past%20a%20moving%20wedge&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kudenatti,%20Ramesh%20B.&rft.date=2020-07-01&rft.volume=1597&rft.issue=1&rft.spage=12020&rft.pages=12020-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1597/1/012020&rft_dat=%3Cproquest_iop_j%3E2570566790%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570566790&rft_id=info:pmid/&rfr_iscdi=true |