Tree based credible set estimation

Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2021-11, Vol.31 (6), Article 69
Hauptverfasser: Lee, Jeong Eun, Nicholls, Geoff K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Statistics and computing
container_volume 31
creator Lee, Jeong Eun
Nicholls, Geoff K.
description Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of R d as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.
doi_str_mv 10.1007/s11222-021-10045-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570438731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570438731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d854d8454767379d288d2ad564e863704cc48af0e570ae34d7fc267a6b55d60a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOi5-hMJl89SvELCl7qOaSbWWmp3ZpsD_57oyt48zQMvM87wyPEJcINArjbgqiUkqBQ1l0bSUdigsaRRHLmWExgZkESOn0qzkrZACBa0hNxtczMzSoWTk2bOa1XW24KDw2XYf0eh3W_OxcnXdwWvvidU_H6cL-cP8nFy-Pz_G4hW0I9yOSNTl4b7awjN0vK-6RiMlazt-RAt632sQM2DiKTTq5rlXXRroxJFiJNxfXYu8_9x6HeD5v-kHf1ZFCV0eQdYU2pMdXmvpTMXdjn-mj-DAjh20UYXYTqIvy4CFQhGqFSw7s3zn_V_1BfhPJe0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570438731</pqid></control><display><type>article</type><title>Tree based credible set estimation</title><source>SpringerLink Journals</source><creator>Lee, Jeong Eun ; Nicholls, Geoff K.</creator><creatorcontrib>Lee, Jeong Eun ; Nicholls, Geoff K.</creatorcontrib><description>Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of R d as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-021-10045-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; Data processing ; Density ; Mathematical analysis ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Trees</subject><ispartof>Statistics and computing, 2021-11, Vol.31 (6), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-d854d8454767379d288d2ad564e863704cc48af0e570ae34d7fc267a6b55d60a3</cites><orcidid>0000-0003-4993-4683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-021-10045-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-021-10045-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee, Jeong Eun</creatorcontrib><creatorcontrib>Nicholls, Geoff K.</creatorcontrib><title>Tree based credible set estimation</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of R d as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Data processing</subject><subject>Density</subject><subject>Mathematical analysis</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Trees</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOi5-hMJl89SvELCl7qOaSbWWmp3ZpsD_57oyt48zQMvM87wyPEJcINArjbgqiUkqBQ1l0bSUdigsaRRHLmWExgZkESOn0qzkrZACBa0hNxtczMzSoWTk2bOa1XW24KDw2XYf0eh3W_OxcnXdwWvvidU_H6cL-cP8nFy-Pz_G4hW0I9yOSNTl4b7awjN0vK-6RiMlazt-RAt632sQM2DiKTTq5rlXXRroxJFiJNxfXYu8_9x6HeD5v-kHf1ZFCV0eQdYU2pMdXmvpTMXdjn-mj-DAjh20UYXYTqIvy4CFQhGqFSw7s3zn_V_1BfhPJe0Q</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lee, Jeong Eun</creator><creator>Nicholls, Geoff K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4993-4683</orcidid></search><sort><creationdate>20211101</creationdate><title>Tree based credible set estimation</title><author>Lee, Jeong Eun ; Nicholls, Geoff K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d854d8454767379d288d2ad564e863704cc48af0e570ae34d7fc267a6b55d60a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Data processing</topic><topic>Density</topic><topic>Mathematical analysis</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong Eun</creatorcontrib><creatorcontrib>Nicholls, Geoff K.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeong Eun</au><au>Nicholls, Geoff K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tree based credible set estimation</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><artnum>69</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (in: Lee, Sugiyama, Luxburg, Guyon, Garnett (eds) Advances in neural information processing systems, Curran Associates Inc, Red Hook, 2016) approximating a density truncated to a compact subset of R d as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-021-10045-3</doi><orcidid>https://orcid.org/0000-0003-4993-4683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2021-11, Vol.31 (6), Article 69
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2570438731
source SpringerLink Journals
subjects Approximation
Artificial Intelligence
Data processing
Density
Mathematical analysis
Mathematics and Statistics
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Trees
title Tree based credible set estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tree%20based%20credible%20set%20estimation&rft.jtitle=Statistics%20and%20computing&rft.au=Lee,%20Jeong%20Eun&rft.date=2021-11-01&rft.volume=31&rft.issue=6&rft.artnum=69&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-021-10045-3&rft_dat=%3Cproquest_cross%3E2570438731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570438731&rft_id=info:pmid/&rfr_iscdi=true