Deterministic multi-mode gates on a scalable photonic quantum computing platform

Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-09, Vol.17 (9), p.1018-1023
Hauptverfasser: Larsen, Mikkel V., Guo, Xueshi, Breum, Casper R., Neergaard-Nielsen, Jonas S., Andersen, Ulrik L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 9
container_start_page 1018
container_title Nature physics
container_volume 17
creator Larsen, Mikkel V.
Guo, Xueshi
Breum, Casper R.
Neergaard-Nielsen, Jonas S.
Andersen, Ulrik L.
description Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available. Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.
doi_str_mv 10.1038/s41567-021-01296-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570318694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvutZ2HR1SeUiUYYLZc1ympkji1nSH_nkAQbEz3DN85V_oIuUS4RhDlTZSY5QUDjgyQq5yNR2SBhcwYlyUe_-ZCnJKzGPcAkucoFuT1ziUX2rqrY6otbYcm1az1W0d3JrlIfUcNjdY0ZtM42n_45LuJOwymS0NLrW_7IdXdjvaNSZUP7Tk5qUwT3cXPXZL3h_u31RNbvzw-r27XzIoyS0xwUYHaIDqzwaxUUHCpZFUIBCULroSyHEvOt7kwdpuBUzkHCzyzyCWgFUtyNe_2wR8GF5Pe-yF000vNswIElrmSE8VnygYfY3CV7kPdmjBqBP1lTs_m9GROf5vT41QScylOcLdz4W_6n9YnBQ1wsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570318694</pqid></control><display><type>article</type><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</creator><creatorcontrib>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</creatorcontrib><description>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available. Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01296-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Clusters ; Complex Systems ; Condensed Matter Physics ; Continuity (mathematics) ; Data processing ; Entangled states ; Fault tolerance ; Gates ; Gates (circuits) ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optical measurement ; Photonics ; Physics ; Physics and Astronomy ; Quadratures ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum teleportation ; Qubits (quantum computing) ; Theoretical</subject><ispartof>Nature physics, 2021-09, Vol.17 (9), p.1018-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</citedby><cites>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</cites><orcidid>0000-0002-3115-8826 ; 0000-0002-8585-0068 ; 0000-0002-7019-1506 ; 0000-0002-1990-7687 ; 0000-0002-9762-5845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01296-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01296-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Larsen, Mikkel V.</creatorcontrib><creatorcontrib>Guo, Xueshi</creatorcontrib><creatorcontrib>Breum, Casper R.</creatorcontrib><creatorcontrib>Neergaard-Nielsen, Jonas S.</creatorcontrib><creatorcontrib>Andersen, Ulrik L.</creatorcontrib><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available. Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</description><subject>639/766/400/482</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Continuity (mathematics)</subject><subject>Data processing</subject><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical measurement</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum teleportation</subject><subject>Qubits (quantum computing)</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvutZ2HR1SeUiUYYLZc1ympkji1nSH_nkAQbEz3DN85V_oIuUS4RhDlTZSY5QUDjgyQq5yNR2SBhcwYlyUe_-ZCnJKzGPcAkucoFuT1ziUX2rqrY6otbYcm1az1W0d3JrlIfUcNjdY0ZtM42n_45LuJOwymS0NLrW_7IdXdjvaNSZUP7Tk5qUwT3cXPXZL3h_u31RNbvzw-r27XzIoyS0xwUYHaIDqzwaxUUHCpZFUIBCULroSyHEvOt7kwdpuBUzkHCzyzyCWgFUtyNe_2wR8GF5Pe-yF000vNswIElrmSE8VnygYfY3CV7kPdmjBqBP1lTs_m9GROf5vT41QScylOcLdz4W_6n9YnBQ1wsQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Larsen, Mikkel V.</creator><creator>Guo, Xueshi</creator><creator>Breum, Casper R.</creator><creator>Neergaard-Nielsen, Jonas S.</creator><creator>Andersen, Ulrik L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3115-8826</orcidid><orcidid>https://orcid.org/0000-0002-8585-0068</orcidid><orcidid>https://orcid.org/0000-0002-7019-1506</orcidid><orcidid>https://orcid.org/0000-0002-1990-7687</orcidid><orcidid>https://orcid.org/0000-0002-9762-5845</orcidid></search><sort><creationdate>20210901</creationdate><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><author>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/400/482</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Continuity (mathematics)</topic><topic>Data processing</topic><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical measurement</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum teleportation</topic><topic>Qubits (quantum computing)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, Mikkel V.</creatorcontrib><creatorcontrib>Guo, Xueshi</creatorcontrib><creatorcontrib>Breum, Casper R.</creatorcontrib><creatorcontrib>Neergaard-Nielsen, Jonas S.</creatorcontrib><creatorcontrib>Andersen, Ulrik L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, Mikkel V.</au><au>Guo, Xueshi</au><au>Breum, Casper R.</au><au>Neergaard-Nielsen, Jonas S.</au><au>Andersen, Ulrik L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic multi-mode gates on a scalable photonic quantum computing platform</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>1018</spage><epage>1023</epage><pages>1018-1023</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available. Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01296-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3115-8826</orcidid><orcidid>https://orcid.org/0000-0002-8585-0068</orcidid><orcidid>https://orcid.org/0000-0002-7019-1506</orcidid><orcidid>https://orcid.org/0000-0002-1990-7687</orcidid><orcidid>https://orcid.org/0000-0002-9762-5845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-09, Vol.17 (9), p.1018-1023
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2570318694
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/400/482
639/766/483/481
Atomic
Classical and Continuum Physics
Clusters
Complex Systems
Condensed Matter Physics
Continuity (mathematics)
Data processing
Entangled states
Fault tolerance
Gates
Gates (circuits)
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optical measurement
Photonics
Physics
Physics and Astronomy
Quadratures
Quantum computing
Quantum entanglement
Quantum phenomena
Quantum teleportation
Qubits (quantum computing)
Theoretical
title Deterministic multi-mode gates on a scalable photonic quantum computing platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20multi-mode%20gates%20on%20a%20scalable%20photonic%20quantum%20computing%20platform&rft.jtitle=Nature%20physics&rft.au=Larsen,%20Mikkel%20V.&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=1018&rft.epage=1023&rft.pages=1018-1023&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01296-y&rft_dat=%3Cproquest_cross%3E2570318694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570318694&rft_id=info:pmid/&rfr_iscdi=true