Deterministic multi-mode gates on a scalable photonic quantum computing platform
Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-09, Vol.17 (9), p.1018-1023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 9 |
container_start_page | 1018 |
container_title | Nature physics |
container_volume | 17 |
creator | Larsen, Mikkel V. Guo, Xueshi Breum, Casper R. Neergaard-Nielsen, Jonas S. Andersen, Ulrik L. |
description | Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available.
Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform. |
doi_str_mv | 10.1038/s41567-021-01296-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570318694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570318694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvutZ2HR1SeUiUYYLZc1ympkji1nSH_nkAQbEz3DN85V_oIuUS4RhDlTZSY5QUDjgyQq5yNR2SBhcwYlyUe_-ZCnJKzGPcAkucoFuT1ziUX2rqrY6otbYcm1az1W0d3JrlIfUcNjdY0ZtM42n_45LuJOwymS0NLrW_7IdXdjvaNSZUP7Tk5qUwT3cXPXZL3h_u31RNbvzw-r27XzIoyS0xwUYHaIDqzwaxUUHCpZFUIBCULroSyHEvOt7kwdpuBUzkHCzyzyCWgFUtyNe_2wR8GF5Pe-yF000vNswIElrmSE8VnygYfY3CV7kPdmjBqBP1lTs_m9GROf5vT41QScylOcLdz4W_6n9YnBQ1wsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570318694</pqid></control><display><type>article</type><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</creator><creatorcontrib>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</creatorcontrib><description>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available.
Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01296-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/400/482 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Clusters ; Complex Systems ; Condensed Matter Physics ; Continuity (mathematics) ; Data processing ; Entangled states ; Fault tolerance ; Gates ; Gates (circuits) ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optical measurement ; Photonics ; Physics ; Physics and Astronomy ; Quadratures ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Quantum teleportation ; Qubits (quantum computing) ; Theoretical</subject><ispartof>Nature physics, 2021-09, Vol.17 (9), p.1018-1023</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</citedby><cites>FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</cites><orcidid>0000-0002-3115-8826 ; 0000-0002-8585-0068 ; 0000-0002-7019-1506 ; 0000-0002-1990-7687 ; 0000-0002-9762-5845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01296-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01296-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Larsen, Mikkel V.</creatorcontrib><creatorcontrib>Guo, Xueshi</creatorcontrib><creatorcontrib>Breum, Casper R.</creatorcontrib><creatorcontrib>Neergaard-Nielsen, Jonas S.</creatorcontrib><creatorcontrib>Andersen, Ulrik L.</creatorcontrib><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available.
Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</description><subject>639/766/400/482</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Continuity (mathematics)</subject><subject>Data processing</subject><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Gates</subject><subject>Gates (circuits)</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical measurement</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratures</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum teleportation</subject><subject>Qubits (quantum computing)</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRvutZ2HR1SeUiUYYLZc1ympkji1nSH_nkAQbEz3DN85V_oIuUS4RhDlTZSY5QUDjgyQq5yNR2SBhcwYlyUe_-ZCnJKzGPcAkucoFuT1ziUX2rqrY6otbYcm1az1W0d3JrlIfUcNjdY0ZtM42n_45LuJOwymS0NLrW_7IdXdjvaNSZUP7Tk5qUwT3cXPXZL3h_u31RNbvzw-r27XzIoyS0xwUYHaIDqzwaxUUHCpZFUIBCULroSyHEvOt7kwdpuBUzkHCzyzyCWgFUtyNe_2wR8GF5Pe-yF000vNswIElrmSE8VnygYfY3CV7kPdmjBqBP1lTs_m9GROf5vT41QScylOcLdz4W_6n9YnBQ1wsQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Larsen, Mikkel V.</creator><creator>Guo, Xueshi</creator><creator>Breum, Casper R.</creator><creator>Neergaard-Nielsen, Jonas S.</creator><creator>Andersen, Ulrik L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3115-8826</orcidid><orcidid>https://orcid.org/0000-0002-8585-0068</orcidid><orcidid>https://orcid.org/0000-0002-7019-1506</orcidid><orcidid>https://orcid.org/0000-0002-1990-7687</orcidid><orcidid>https://orcid.org/0000-0002-9762-5845</orcidid></search><sort><creationdate>20210901</creationdate><title>Deterministic multi-mode gates on a scalable photonic quantum computing platform</title><author>Larsen, Mikkel V. ; Guo, Xueshi ; Breum, Casper R. ; Neergaard-Nielsen, Jonas S. ; Andersen, Ulrik L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-323f09b11eab1589072494f73109472939c21822d63acd50e9620c025c12401c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/400/482</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Continuity (mathematics)</topic><topic>Data processing</topic><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Gates</topic><topic>Gates (circuits)</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical measurement</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratures</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum teleportation</topic><topic>Qubits (quantum computing)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larsen, Mikkel V.</creatorcontrib><creatorcontrib>Guo, Xueshi</creatorcontrib><creatorcontrib>Breum, Casper R.</creatorcontrib><creatorcontrib>Neergaard-Nielsen, Jonas S.</creatorcontrib><creatorcontrib>Andersen, Ulrik L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larsen, Mikkel V.</au><au>Guo, Xueshi</au><au>Breum, Casper R.</au><au>Neergaard-Nielsen, Jonas S.</au><au>Andersen, Ulrik L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic multi-mode gates on a scalable photonic quantum computing platform</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>1018</spage><epage>1023</epage><pages>1018-1023</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available.
Measurement-based quantum computing performs quantum gates on entangled states without difficult multi-qubit coherent dynamics. A set of gates sufficient for universal quantum computing has now been implemented on a programmable optical platform.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01296-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3115-8826</orcidid><orcidid>https://orcid.org/0000-0002-8585-0068</orcidid><orcidid>https://orcid.org/0000-0002-7019-1506</orcidid><orcidid>https://orcid.org/0000-0002-1990-7687</orcidid><orcidid>https://orcid.org/0000-0002-9762-5845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2021-09, Vol.17 (9), p.1018-1023 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2570318694 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/766/400/482 639/766/483/481 Atomic Classical and Continuum Physics Clusters Complex Systems Condensed Matter Physics Continuity (mathematics) Data processing Entangled states Fault tolerance Gates Gates (circuits) Mathematical and Computational Physics Molecular Optical and Plasma Physics Optical measurement Photonics Physics Physics and Astronomy Quadratures Quantum computing Quantum entanglement Quantum phenomena Quantum teleportation Qubits (quantum computing) Theoretical |
title | Deterministic multi-mode gates on a scalable photonic quantum computing platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20multi-mode%20gates%20on%20a%20scalable%20photonic%20quantum%20computing%20platform&rft.jtitle=Nature%20physics&rft.au=Larsen,%20Mikkel%20V.&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=1018&rft.epage=1023&rft.pages=1018-1023&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01296-y&rft_dat=%3Cproquest_cross%3E2570318694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570318694&rft_id=info:pmid/&rfr_iscdi=true |