Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region
The hexapod robots equipped with six legs have higher stability and adaptability to challenging terrains than other legged robots with fewer legs. The ability of hexapods to traverse challenging terrains largely depends on practical planning approaches on their footstep sequence. However, suppose th...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2021-10, Vol.103 (2), Article 25 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of intelligent & robotic systems |
container_volume | 103 |
creator | Ding, Liang Wang, Guanyu Gao, Haibo Liu, Guangjun Yang, Huaiguang Deng, Zongquan |
description | The hexapod robots equipped with six legs have higher stability and adaptability to challenging terrains than other legged robots with fewer legs. The ability of hexapods to traverse challenging terrains largely depends on practical planning approaches on their footstep sequence. However, suppose the stability of the robotic system is insufficiently considered with the footstep planning method, it cannot track the planning results in some extremely complex terrains, e.g., foot slippage or robot overturn. In this work, we develop a quasi-static equilibrium footstep planning method for hexapod robots to traverse challenging terrains. The core of this planning method is the proposed 3D quasi-static equilibrium support region (3D QESR), which can be employed as a constraint for the planning method to ensure the quasi-static stability of the hexapod robots. A new graph search algorithm for footstep sequence planning is also presented. The simulation and experiment results show that the proposed 3D QESR method has superior performance in bypassing unstable irregular regions compared with the widely used support polygon method. |
doi_str_mv | 10.1007/s10846-021-01469-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2570314923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724053329</galeid><sourcerecordid>A724053329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f8e3eed0a86e6cf0c4ac94f29807583ccfc46db3afc25eda69542421e9f51a7f3</originalsourceid><addsrcrecordid>eNp9kF1LHTEQhoNU8FT9A14Fer06-drdXFqrtSDUT_Au5GQnh8g5yZrsQv33RrfQuzIXA_O-z8zwEnLC4JQBdGeFQS_bBjhrgMlWN7BHVkx1ogEJ-gtZgf6QuG4PyNdSXgBA90qvyPNVSlOZcKS3WxtjiBvqU6bX-MeOaaD3aV1l-t0WHGiKVPygd7MtoSmTnYKjl69z2IZ1DvOOPszjmPJE73ETUjwi-95uCx7_7Yfk6ery8eK6ufn989fF-U3jhOqnxvcoEAewfYut8-CkdVp6rnvoVC-c8062w1pY77jCwbZaSS45Q-0Vs50Xh-TbsnfM6XXGMpmXNOdYTxquOhBMai6q63RxbewWTYg-Tdm6WgPugksRfajz845LUEJwXQG-AC6nUjJ6M-aws_nNMDAfkZslclMjN5-RG6iQWKBSzXGD-d8v_6HeAb6JhAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570314923</pqid></control><display><type>article</type><title>Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ding, Liang ; Wang, Guanyu ; Gao, Haibo ; Liu, Guangjun ; Yang, Huaiguang ; Deng, Zongquan</creator><creatorcontrib>Ding, Liang ; Wang, Guanyu ; Gao, Haibo ; Liu, Guangjun ; Yang, Huaiguang ; Deng, Zongquan</creatorcontrib><description>The hexapod robots equipped with six legs have higher stability and adaptability to challenging terrains than other legged robots with fewer legs. The ability of hexapods to traverse challenging terrains largely depends on practical planning approaches on their footstep sequence. However, suppose the stability of the robotic system is insufficiently considered with the footstep planning method, it cannot track the planning results in some extremely complex terrains, e.g., foot slippage or robot overturn. In this work, we develop a quasi-static equilibrium footstep planning method for hexapod robots to traverse challenging terrains. The core of this planning method is the proposed 3D quasi-static equilibrium support region (3D QESR), which can be employed as a constraint for the planning method to ensure the quasi-static stability of the hexapod robots. A new graph search algorithm for footstep sequence planning is also presented. The simulation and experiment results show that the proposed 3D QESR method has superior performance in bypassing unstable irregular regions compared with the widely used support polygon method.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-021-01469-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Control ; Electrical Engineering ; Engineering ; Equilibrium ; Extreme values ; Mechanical Engineering ; Mechatronics ; Regular Paper ; Robotics ; Robotics industry ; Robots ; Search algorithms ; Static equilibrium ; Static stability</subject><ispartof>Journal of intelligent & robotic systems, 2021-10, Vol.103 (2), Article 25</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f8e3eed0a86e6cf0c4ac94f29807583ccfc46db3afc25eda69542421e9f51a7f3</citedby><cites>FETCH-LOGICAL-c358t-f8e3eed0a86e6cf0c4ac94f29807583ccfc46db3afc25eda69542421e9f51a7f3</cites><orcidid>0000-0003-3627-0232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-021-01469-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-021-01469-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Wang, Guanyu</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Liu, Guangjun</creatorcontrib><creatorcontrib>Yang, Huaiguang</creatorcontrib><creatorcontrib>Deng, Zongquan</creatorcontrib><title>Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>The hexapod robots equipped with six legs have higher stability and adaptability to challenging terrains than other legged robots with fewer legs. The ability of hexapods to traverse challenging terrains largely depends on practical planning approaches on their footstep sequence. However, suppose the stability of the robotic system is insufficiently considered with the footstep planning method, it cannot track the planning results in some extremely complex terrains, e.g., foot slippage or robot overturn. In this work, we develop a quasi-static equilibrium footstep planning method for hexapod robots to traverse challenging terrains. The core of this planning method is the proposed 3D quasi-static equilibrium support region (3D QESR), which can be employed as a constraint for the planning method to ensure the quasi-static stability of the hexapod robots. A new graph search algorithm for footstep sequence planning is also presented. The simulation and experiment results show that the proposed 3D QESR method has superior performance in bypassing unstable irregular regions compared with the widely used support polygon method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Extreme values</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Robotics industry</subject><subject>Robots</subject><subject>Search algorithms</subject><subject>Static equilibrium</subject><subject>Static stability</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1LHTEQhoNU8FT9A14Fer06-drdXFqrtSDUT_Au5GQnh8g5yZrsQv33RrfQuzIXA_O-z8zwEnLC4JQBdGeFQS_bBjhrgMlWN7BHVkx1ogEJ-gtZgf6QuG4PyNdSXgBA90qvyPNVSlOZcKS3WxtjiBvqU6bX-MeOaaD3aV1l-t0WHGiKVPygd7MtoSmTnYKjl69z2IZ1DvOOPszjmPJE73ETUjwi-95uCx7_7Yfk6ery8eK6ufn989fF-U3jhOqnxvcoEAewfYut8-CkdVp6rnvoVC-c8062w1pY77jCwbZaSS45Q-0Vs50Xh-TbsnfM6XXGMpmXNOdYTxquOhBMai6q63RxbewWTYg-Tdm6WgPugksRfajz845LUEJwXQG-AC6nUjJ6M-aws_nNMDAfkZslclMjN5-RG6iQWKBSzXGD-d8v_6HeAb6JhAc</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ding, Liang</creator><creator>Wang, Guanyu</creator><creator>Gao, Haibo</creator><creator>Liu, Guangjun</creator><creator>Yang, Huaiguang</creator><creator>Deng, Zongquan</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3627-0232</orcidid></search><sort><creationdate>20211001</creationdate><title>Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region</title><author>Ding, Liang ; Wang, Guanyu ; Gao, Haibo ; Liu, Guangjun ; Yang, Huaiguang ; Deng, Zongquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f8e3eed0a86e6cf0c4ac94f29807583ccfc46db3afc25eda69542421e9f51a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Extreme values</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Robotics industry</topic><topic>Robots</topic><topic>Search algorithms</topic><topic>Static equilibrium</topic><topic>Static stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Liang</creatorcontrib><creatorcontrib>Wang, Guanyu</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Liu, Guangjun</creatorcontrib><creatorcontrib>Yang, Huaiguang</creatorcontrib><creatorcontrib>Deng, Zongquan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Liang</au><au>Wang, Guanyu</au><au>Gao, Haibo</au><au>Liu, Guangjun</au><au>Yang, Huaiguang</au><au>Deng, Zongquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>103</volume><issue>2</issue><artnum>25</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>The hexapod robots equipped with six legs have higher stability and adaptability to challenging terrains than other legged robots with fewer legs. The ability of hexapods to traverse challenging terrains largely depends on practical planning approaches on their footstep sequence. However, suppose the stability of the robotic system is insufficiently considered with the footstep planning method, it cannot track the planning results in some extremely complex terrains, e.g., foot slippage or robot overturn. In this work, we develop a quasi-static equilibrium footstep planning method for hexapod robots to traverse challenging terrains. The core of this planning method is the proposed 3D quasi-static equilibrium support region (3D QESR), which can be employed as a constraint for the planning method to ensure the quasi-static stability of the hexapod robots. A new graph search algorithm for footstep sequence planning is also presented. The simulation and experiment results show that the proposed 3D QESR method has superior performance in bypassing unstable irregular regions compared with the widely used support polygon method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-021-01469-0</doi><orcidid>https://orcid.org/0000-0003-3627-0232</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2021-10, Vol.103 (2), Article 25 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2570314923 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Control Electrical Engineering Engineering Equilibrium Extreme values Mechanical Engineering Mechatronics Regular Paper Robotics Robotics industry Robots Search algorithms Static equilibrium Static stability |
title | Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Footstep%20Planning%20for%20Hexapod%20Robots%20Based%20on%203D%20Quasi-static%20Equilibrium%20Support%20Region&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Ding,%20Liang&rft.date=2021-10-01&rft.volume=103&rft.issue=2&rft.artnum=25&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-021-01469-0&rft_dat=%3Cgale_proqu%3EA724053329%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570314923&rft_id=info:pmid/&rft_galeid=A724053329&rfr_iscdi=true |