Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness

Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-10, Vol.6 (4), p.8333-8340
Hauptverfasser: Takahashi, Tomoya, Watanabe, Masahiro, Tadakuma, Kenjiro, Takane, Eri, Konyo, Masashi, Tadokoro, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8340
container_issue 4
container_start_page 8333
container_title IEEE robotics and automation letters
container_volume 6
creator Takahashi, Tomoya
Watanabe, Masahiro
Tadakuma, Kenjiro
Takane, Eri
Konyo, Masashi
Tadokoro, Satoshi
description Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.
doi_str_mv 10.1109/LRA.2021.3105744
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2570196903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9517010</ieee_id><sourcerecordid>2570196903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpcFz1vzsdmQY63aCitCu55DNpntprTZutkq9a83pUU8zTC892bmh9AtwWNCsHwoFpMxxZSMGcFcZNkFGlAmRMpEnl_-66_RKIQ1xphwKpjkA1SU3226bAD6pDzsIFm0ve4O6VPnvsAnZeN88gjeOr9K3sA02ruwTRagN-7nOJu7VZMse1fXHkK4QVe13gQYnesQfbw8l9N5WrzPXqeTIjXxvj61guVgKbHCVByzTOSMQs4ItzVjwK3NaC0ZMaQS1FaGy0wDUK0pt5UwxrAhuj_l7rr2cw-hV-t23_m4UlEuMJG5xCyq8EllujaEDmq169w2fqcIVkdsKmJTR2zqjC1a7k4WBwB_cslJDMXsF-G7Z_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570196903</pqid></control><display><type>article</type><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><source>IEEE Electronic Library (IEL)</source><creator>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</creator><creatorcontrib>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</creatorcontrib><description>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3105744</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Bending ; Compliant joints and mechanisms ; Deformation ; Grippers ; grippers and other end-effectors ; Metal sheets ; Metals ; Modulus of elasticity ; Piezoelectric transducers ; Shape ; soft robot materials and design ; Stiffness ; Strain</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8333-8340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</cites><orcidid>0000-0002-6675-4214 ; 0000-0003-2035-0617 ; 0000-0002-4009-5361 ; 0000-0002-5571-4276 ; 0000-0002-6826-9722 ; 0000-0003-0919-2312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9517010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9517010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, Tomoya</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Tadakuma, Kenjiro</creatorcontrib><creatorcontrib>Takane, Eri</creatorcontrib><creatorcontrib>Konyo, Masashi</creatorcontrib><creatorcontrib>Tadokoro, Satoshi</creatorcontrib><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</description><subject>Actuators</subject><subject>Bending</subject><subject>Compliant joints and mechanisms</subject><subject>Deformation</subject><subject>Grippers</subject><subject>grippers and other end-effectors</subject><subject>Metal sheets</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>Piezoelectric transducers</subject><subject>Shape</subject><subject>soft robot materials and design</subject><subject>Stiffness</subject><subject>Strain</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpcFz1vzsdmQY63aCitCu55DNpntprTZutkq9a83pUU8zTC892bmh9AtwWNCsHwoFpMxxZSMGcFcZNkFGlAmRMpEnl_-66_RKIQ1xphwKpjkA1SU3226bAD6pDzsIFm0ve4O6VPnvsAnZeN88gjeOr9K3sA02ruwTRagN-7nOJu7VZMse1fXHkK4QVe13gQYnesQfbw8l9N5WrzPXqeTIjXxvj61guVgKbHCVByzTOSMQs4ItzVjwK3NaC0ZMaQS1FaGy0wDUK0pt5UwxrAhuj_l7rr2cw-hV-t23_m4UlEuMJG5xCyq8EllujaEDmq169w2fqcIVkdsKmJTR2zqjC1a7k4WBwB_cslJDMXsF-G7Z_M</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Takahashi, Tomoya</creator><creator>Watanabe, Masahiro</creator><creator>Tadakuma, Kenjiro</creator><creator>Takane, Eri</creator><creator>Konyo, Masashi</creator><creator>Tadokoro, Satoshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6675-4214</orcidid><orcidid>https://orcid.org/0000-0003-2035-0617</orcidid><orcidid>https://orcid.org/0000-0002-4009-5361</orcidid><orcidid>https://orcid.org/0000-0002-5571-4276</orcidid><orcidid>https://orcid.org/0000-0002-6826-9722</orcidid><orcidid>https://orcid.org/0000-0003-0919-2312</orcidid></search><sort><creationdate>20211001</creationdate><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><author>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Bending</topic><topic>Compliant joints and mechanisms</topic><topic>Deformation</topic><topic>Grippers</topic><topic>grippers and other end-effectors</topic><topic>Metal sheets</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>Piezoelectric transducers</topic><topic>Shape</topic><topic>soft robot materials and design</topic><topic>Stiffness</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Tomoya</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Tadakuma, Kenjiro</creatorcontrib><creatorcontrib>Takane, Eri</creatorcontrib><creatorcontrib>Konyo, Masashi</creatorcontrib><creatorcontrib>Tadokoro, Satoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, Tomoya</au><au>Watanabe, Masahiro</au><au>Tadakuma, Kenjiro</au><au>Takane, Eri</au><au>Konyo, Masashi</au><au>Tadokoro, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>8333</spage><epage>8340</epage><pages>8333-8340</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3105744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6675-4214</orcidid><orcidid>https://orcid.org/0000-0003-2035-0617</orcidid><orcidid>https://orcid.org/0000-0002-4009-5361</orcidid><orcidid>https://orcid.org/0000-0002-5571-4276</orcidid><orcidid>https://orcid.org/0000-0002-6826-9722</orcidid><orcidid>https://orcid.org/0000-0003-0919-2312</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8333-8340
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2570196903
source IEEE Electronic Library (IEL)
subjects Actuators
Bending
Compliant joints and mechanisms
Deformation
Grippers
grippers and other end-effectors
Metal sheets
Metals
Modulus of elasticity
Piezoelectric transducers
Shape
soft robot materials and design
Stiffness
Strain
title Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Sheet%20Type%20Rotary-Driven%20Thin%20Bending%20Mechanism%20Realizing%20High%20Stiffness&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Takahashi,%20Tomoya&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=8333&rft.epage=8340&rft.pages=8333-8340&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3105744&rft_dat=%3Cproquest_RIE%3E2570196903%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570196903&rft_id=info:pmid/&rft_ieee_id=9517010&rfr_iscdi=true