Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness
Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which le...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-10, Vol.6 (4), p.8333-8340 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8340 |
---|---|
container_issue | 4 |
container_start_page | 8333 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Takahashi, Tomoya Watanabe, Masahiro Tadakuma, Kenjiro Takane, Eri Konyo, Masashi Tadokoro, Satoshi |
description | Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending. |
doi_str_mv | 10.1109/LRA.2021.3105744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2570196903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9517010</ieee_id><sourcerecordid>2570196903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpcFz1vzsdmQY63aCitCu55DNpntprTZutkq9a83pUU8zTC892bmh9AtwWNCsHwoFpMxxZSMGcFcZNkFGlAmRMpEnl_-66_RKIQ1xphwKpjkA1SU3226bAD6pDzsIFm0ve4O6VPnvsAnZeN88gjeOr9K3sA02ruwTRagN-7nOJu7VZMse1fXHkK4QVe13gQYnesQfbw8l9N5WrzPXqeTIjXxvj61guVgKbHCVByzTOSMQs4ItzVjwK3NaC0ZMaQS1FaGy0wDUK0pt5UwxrAhuj_l7rr2cw-hV-t23_m4UlEuMJG5xCyq8EllujaEDmq169w2fqcIVkdsKmJTR2zqjC1a7k4WBwB_cslJDMXsF-G7Z_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570196903</pqid></control><display><type>article</type><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><source>IEEE Electronic Library (IEL)</source><creator>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</creator><creatorcontrib>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</creatorcontrib><description>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3105744</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Bending ; Compliant joints and mechanisms ; Deformation ; Grippers ; grippers and other end-effectors ; Metal sheets ; Metals ; Modulus of elasticity ; Piezoelectric transducers ; Shape ; soft robot materials and design ; Stiffness ; Strain</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8333-8340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</cites><orcidid>0000-0002-6675-4214 ; 0000-0003-2035-0617 ; 0000-0002-4009-5361 ; 0000-0002-5571-4276 ; 0000-0002-6826-9722 ; 0000-0003-0919-2312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9517010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9517010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, Tomoya</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Tadakuma, Kenjiro</creatorcontrib><creatorcontrib>Takane, Eri</creatorcontrib><creatorcontrib>Konyo, Masashi</creatorcontrib><creatorcontrib>Tadokoro, Satoshi</creatorcontrib><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</description><subject>Actuators</subject><subject>Bending</subject><subject>Compliant joints and mechanisms</subject><subject>Deformation</subject><subject>Grippers</subject><subject>grippers and other end-effectors</subject><subject>Metal sheets</subject><subject>Metals</subject><subject>Modulus of elasticity</subject><subject>Piezoelectric transducers</subject><subject>Shape</subject><subject>soft robot materials and design</subject><subject>Stiffness</subject><subject>Strain</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpcFz1vzsdmQY63aCitCu55DNpntprTZutkq9a83pUU8zTC892bmh9AtwWNCsHwoFpMxxZSMGcFcZNkFGlAmRMpEnl_-66_RKIQ1xphwKpjkA1SU3226bAD6pDzsIFm0ve4O6VPnvsAnZeN88gjeOr9K3sA02ruwTRagN-7nOJu7VZMse1fXHkK4QVe13gQYnesQfbw8l9N5WrzPXqeTIjXxvj61guVgKbHCVByzTOSMQs4ItzVjwK3NaC0ZMaQS1FaGy0wDUK0pt5UwxrAhuj_l7rr2cw-hV-t23_m4UlEuMJG5xCyq8EllujaEDmq169w2fqcIVkdsKmJTR2zqjC1a7k4WBwB_cslJDMXsF-G7Z_M</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Takahashi, Tomoya</creator><creator>Watanabe, Masahiro</creator><creator>Tadakuma, Kenjiro</creator><creator>Takane, Eri</creator><creator>Konyo, Masashi</creator><creator>Tadokoro, Satoshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6675-4214</orcidid><orcidid>https://orcid.org/0000-0003-2035-0617</orcidid><orcidid>https://orcid.org/0000-0002-4009-5361</orcidid><orcidid>https://orcid.org/0000-0002-5571-4276</orcidid><orcidid>https://orcid.org/0000-0002-6826-9722</orcidid><orcidid>https://orcid.org/0000-0003-0919-2312</orcidid></search><sort><creationdate>20211001</creationdate><title>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</title><author>Takahashi, Tomoya ; Watanabe, Masahiro ; Tadakuma, Kenjiro ; Takane, Eri ; Konyo, Masashi ; Tadokoro, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d736ed21d7cb50347632e6315df33e5dd42f931c1b72dbc594aee2aa25db7ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Bending</topic><topic>Compliant joints and mechanisms</topic><topic>Deformation</topic><topic>Grippers</topic><topic>grippers and other end-effectors</topic><topic>Metal sheets</topic><topic>Metals</topic><topic>Modulus of elasticity</topic><topic>Piezoelectric transducers</topic><topic>Shape</topic><topic>soft robot materials and design</topic><topic>Stiffness</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Tomoya</creatorcontrib><creatorcontrib>Watanabe, Masahiro</creatorcontrib><creatorcontrib>Tadakuma, Kenjiro</creatorcontrib><creatorcontrib>Takane, Eri</creatorcontrib><creatorcontrib>Konyo, Masashi</creatorcontrib><creatorcontrib>Tadokoro, Satoshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, Tomoya</au><au>Watanabe, Masahiro</au><au>Tadakuma, Kenjiro</au><au>Takane, Eri</au><au>Konyo, Masashi</au><au>Tadokoro, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>8333</spage><epage>8340</epage><pages>8333-8340</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Thin construction is an advantage in the design of mechanisms. Among them, the soft-bending thin sheet actuator can fit into the shape of an object and grasp it after inserting a finger into a narrow space. However, to facilitate bending, these mechanisms are thin or made of soft materials, which leads to low stiffness. In this study, we proposed a thin metal sheet actuator that deforms its cross-section in accordance with the bending motion to achieve both thinness and rigidity. It was composed of two metal sheets connected with rotational joints and links. We focused on the anisotropic bending stiffness of the metal sheet and realized a three-dimensional deformation structure; it can be driven only with rotary-driven input using both torsional and bending deformations of the sheet. The experimental results indicate that the stiffness is up to 8.7 times higher compared to the undeformed sheet structure. In addition, we used this mechanism to realize a thin finger mechanism with a lifting motion after inserting a narrow gap between the object and the floor. Additionally, we realized a compliant contacting motion by focusing on different elasticities depending on the direction of bending.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3105744</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6675-4214</orcidid><orcidid>https://orcid.org/0000-0003-2035-0617</orcidid><orcidid>https://orcid.org/0000-0002-4009-5361</orcidid><orcidid>https://orcid.org/0000-0002-5571-4276</orcidid><orcidid>https://orcid.org/0000-0002-6826-9722</orcidid><orcidid>https://orcid.org/0000-0003-0919-2312</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.8333-8340 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2570196903 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Bending Compliant joints and mechanisms Deformation Grippers grippers and other end-effectors Metal sheets Metals Modulus of elasticity Piezoelectric transducers Shape soft robot materials and design Stiffness Strain |
title | Two-Sheet Type Rotary-Driven Thin Bending Mechanism Realizing High Stiffness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Sheet%20Type%20Rotary-Driven%20Thin%20Bending%20Mechanism%20Realizing%20High%20Stiffness&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Takahashi,%20Tomoya&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=8333&rft.epage=8340&rft.pages=8333-8340&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3105744&rft_dat=%3Cproquest_RIE%3E2570196903%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570196903&rft_id=info:pmid/&rft_ieee_id=9517010&rfr_iscdi=true |