Complex frequency identification using real modal shapes for a structure with proportional damping

Modal identification is based on modal superposition theory. For structures with proportional damping, the structural responses are recognized as real modal shapes multiplied by real modal coordinates. However, it is not true because the actual modal shapes should be complex even though they can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2021-10, Vol.36 (10), p.1322-1336
Hauptverfasser: Qu, Chun‐Xu, Yi, Ting‐Hua, Yao, Xiao‐Jun, Li, Hong‐Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1336
container_issue 10
container_start_page 1322
container_title Computer-aided civil and infrastructure engineering
container_volume 36
creator Qu, Chun‐Xu
Yi, Ting‐Hua
Yao, Xiao‐Jun
Li, Hong‐Nan
description Modal identification is based on modal superposition theory. For structures with proportional damping, the structural responses are recognized as real modal shapes multiplied by real modal coordinates. However, it is not true because the actual modal shapes should be complex even though they can be normalized to real ones. If the modal shapes are recognized as real ones, the modal superposition theory cannot reflect the actual modal parameters. This paper proposes an innovative method to identify complex frequencies for a structure with proportional damping using the identified real modal shapes, where the complex modal shapes are considered. The proportional damping is ideal but always assumed in practical engineering. The characteristic of the proposed method is that the complex property of frequencies is considered along with modal identification process. First, the reason why the complex modal shapes are hidden is revealed. When the real modal shapes are obtained, the Hilbert transform of analytical responses is used to estimate complex coordinates. Then, formulas to identify the complex frequencies are derived. The k‐means clustering method is employed. Finally, the proposed method is used in a numerical example and a practical bridge example. The results show that the proposed method can estimate the complex frequencies effectively, and can be used in practical engineering.
doi_str_mv 10.1111/mice.12676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2570154817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570154817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3016-806d23b6b8041fab1dc30901a9d13dd04c017e812e9e5b9dcb01e123b5b9cc123</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkscUNK8ebHSY4oKlCpiAucLcfeUFdJHOxEpW-PSzizB3tsfbPaHUJuga0g1ENnFK4g5jk_IwtIeR4VnOfnQbMyiUpe5Jfkyvs9C5WmyYLUle2GFr9p4_Brwl4dqdHYj6YxSo7G9nTypv-kDmVLO6vD6XdyQE8b66ikfnSTGieH9GDGHR2cHaw7-QKoZTcE7zW5aGTr8ebvXpKPp_V79RJt35431eM2UgkDHhWM6zipeV2wFBpZgw7_JQNZaki0ZqlikGMBMZaY1aVWNQOE4AgPpYJYkru5bxgirOJHsbeTC4N4EWc5gywtIA_U_UwpZ7132IjBmU66owAmThmKU4biN8MAwwwfTIvHf0jxuqnWs-cHxvt1iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570154817</pqid></control><display><type>article</type><title>Complex frequency identification using real modal shapes for a structure with proportional damping</title><source>Wiley Online Library All Journals</source><creator>Qu, Chun‐Xu ; Yi, Ting‐Hua ; Yao, Xiao‐Jun ; Li, Hong‐Nan</creator><creatorcontrib>Qu, Chun‐Xu ; Yi, Ting‐Hua ; Yao, Xiao‐Jun ; Li, Hong‐Nan</creatorcontrib><description>Modal identification is based on modal superposition theory. For structures with proportional damping, the structural responses are recognized as real modal shapes multiplied by real modal coordinates. However, it is not true because the actual modal shapes should be complex even though they can be normalized to real ones. If the modal shapes are recognized as real ones, the modal superposition theory cannot reflect the actual modal parameters. This paper proposes an innovative method to identify complex frequencies for a structure with proportional damping using the identified real modal shapes, where the complex modal shapes are considered. The proportional damping is ideal but always assumed in practical engineering. The characteristic of the proposed method is that the complex property of frequencies is considered along with modal identification process. First, the reason why the complex modal shapes are hidden is revealed. When the real modal shapes are obtained, the Hilbert transform of analytical responses is used to estimate complex coordinates. Then, formulas to identify the complex frequencies are derived. The k‐means clustering method is employed. Finally, the proposed method is used in a numerical example and a practical bridge example. The results show that the proposed method can estimate the complex frequencies effectively, and can be used in practical engineering.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12676</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Clustering ; Damping ; Hilbert transformation ; Identification methods ; Modal identification ; Mode superposition method ; Parameter identification ; Shape recognition ; Structural response</subject><ispartof>Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1322-1336</ispartof><rights>2021</rights><rights>2021 Computer‐Aided Civil and Infrastructure Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3016-806d23b6b8041fab1dc30901a9d13dd04c017e812e9e5b9dcb01e123b5b9cc123</citedby><cites>FETCH-LOGICAL-c3016-806d23b6b8041fab1dc30901a9d13dd04c017e812e9e5b9dcb01e123b5b9cc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12676$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12676$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Qu, Chun‐Xu</creatorcontrib><creatorcontrib>Yi, Ting‐Hua</creatorcontrib><creatorcontrib>Yao, Xiao‐Jun</creatorcontrib><creatorcontrib>Li, Hong‐Nan</creatorcontrib><title>Complex frequency identification using real modal shapes for a structure with proportional damping</title><title>Computer-aided civil and infrastructure engineering</title><description>Modal identification is based on modal superposition theory. For structures with proportional damping, the structural responses are recognized as real modal shapes multiplied by real modal coordinates. However, it is not true because the actual modal shapes should be complex even though they can be normalized to real ones. If the modal shapes are recognized as real ones, the modal superposition theory cannot reflect the actual modal parameters. This paper proposes an innovative method to identify complex frequencies for a structure with proportional damping using the identified real modal shapes, where the complex modal shapes are considered. The proportional damping is ideal but always assumed in practical engineering. The characteristic of the proposed method is that the complex property of frequencies is considered along with modal identification process. First, the reason why the complex modal shapes are hidden is revealed. When the real modal shapes are obtained, the Hilbert transform of analytical responses is used to estimate complex coordinates. Then, formulas to identify the complex frequencies are derived. The k‐means clustering method is employed. Finally, the proposed method is used in a numerical example and a practical bridge example. The results show that the proposed method can estimate the complex frequencies effectively, and can be used in practical engineering.</description><subject>Clustering</subject><subject>Damping</subject><subject>Hilbert transformation</subject><subject>Identification methods</subject><subject>Modal identification</subject><subject>Mode superposition method</subject><subject>Parameter identification</subject><subject>Shape recognition</subject><subject>Structural response</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkscUNK8ebHSY4oKlCpiAucLcfeUFdJHOxEpW-PSzizB3tsfbPaHUJuga0g1ENnFK4g5jk_IwtIeR4VnOfnQbMyiUpe5Jfkyvs9C5WmyYLUle2GFr9p4_Brwl4dqdHYj6YxSo7G9nTypv-kDmVLO6vD6XdyQE8b66ikfnSTGieH9GDGHR2cHaw7-QKoZTcE7zW5aGTr8ebvXpKPp_V79RJt35431eM2UgkDHhWM6zipeV2wFBpZgw7_JQNZaki0ZqlikGMBMZaY1aVWNQOE4AgPpYJYkru5bxgirOJHsbeTC4N4EWc5gywtIA_U_UwpZ7132IjBmU66owAmThmKU4biN8MAwwwfTIvHf0jxuqnWs-cHxvt1iw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Qu, Chun‐Xu</creator><creator>Yi, Ting‐Hua</creator><creator>Yao, Xiao‐Jun</creator><creator>Li, Hong‐Nan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202110</creationdate><title>Complex frequency identification using real modal shapes for a structure with proportional damping</title><author>Qu, Chun‐Xu ; Yi, Ting‐Hua ; Yao, Xiao‐Jun ; Li, Hong‐Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3016-806d23b6b8041fab1dc30901a9d13dd04c017e812e9e5b9dcb01e123b5b9cc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Damping</topic><topic>Hilbert transformation</topic><topic>Identification methods</topic><topic>Modal identification</topic><topic>Mode superposition method</topic><topic>Parameter identification</topic><topic>Shape recognition</topic><topic>Structural response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Chun‐Xu</creatorcontrib><creatorcontrib>Yi, Ting‐Hua</creatorcontrib><creatorcontrib>Yao, Xiao‐Jun</creatorcontrib><creatorcontrib>Li, Hong‐Nan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Chun‐Xu</au><au>Yi, Ting‐Hua</au><au>Yao, Xiao‐Jun</au><au>Li, Hong‐Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex frequency identification using real modal shapes for a structure with proportional damping</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2021-10</date><risdate>2021</risdate><volume>36</volume><issue>10</issue><spage>1322</spage><epage>1336</epage><pages>1322-1336</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>Modal identification is based on modal superposition theory. For structures with proportional damping, the structural responses are recognized as real modal shapes multiplied by real modal coordinates. However, it is not true because the actual modal shapes should be complex even though they can be normalized to real ones. If the modal shapes are recognized as real ones, the modal superposition theory cannot reflect the actual modal parameters. This paper proposes an innovative method to identify complex frequencies for a structure with proportional damping using the identified real modal shapes, where the complex modal shapes are considered. The proportional damping is ideal but always assumed in practical engineering. The characteristic of the proposed method is that the complex property of frequencies is considered along with modal identification process. First, the reason why the complex modal shapes are hidden is revealed. When the real modal shapes are obtained, the Hilbert transform of analytical responses is used to estimate complex coordinates. Then, formulas to identify the complex frequencies are derived. The k‐means clustering method is employed. Finally, the proposed method is used in a numerical example and a practical bridge example. The results show that the proposed method can estimate the complex frequencies effectively, and can be used in practical engineering.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12676</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2021-10, Vol.36 (10), p.1322-1336
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2570154817
source Wiley Online Library All Journals
subjects Clustering
Damping
Hilbert transformation
Identification methods
Modal identification
Mode superposition method
Parameter identification
Shape recognition
Structural response
title Complex frequency identification using real modal shapes for a structure with proportional damping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20frequency%20identification%20using%20real%20modal%20shapes%20for%20a%20structure%20with%20proportional%20damping&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Qu,%20Chun%E2%80%90Xu&rft.date=2021-10&rft.volume=36&rft.issue=10&rft.spage=1322&rft.epage=1336&rft.pages=1322-1336&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12676&rft_dat=%3Cproquest_cross%3E2570154817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570154817&rft_id=info:pmid/&rfr_iscdi=true