Performance of robust EWMA control chart for variability process using non-normal data
The main purpose of quality control is to quickly detect the presence of assignable causes and shifts in the process so that an investigation of the process can be carry out as early as possible. The Shewhart control chart provides good performance when the observation data is normally distributed,...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-03, Vol.1511 (1), p.12054 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12054 |
container_title | Journal of physics. Conference series |
container_volume | 1511 |
creator | Prabawani, N A Mashuri, M Irhamah |
description | The main purpose of quality control is to quickly detect the presence of assignable causes and shifts in the process so that an investigation of the process can be carry out as early as possible. The Shewhart control chart provides good performance when the observation data is normally distributed, whereas when the normality assumption is not met, a Robust control chart is needed. The performance of the control chart depends on the stability of the estimator used to estimate the process parameters and establish control limits in phase I. In this study, a Robust Exponentially Weighted Moving Average (EWMA) control chart will be present to monitor process variability using one of estimator Robust scale to estimate standard deviation. This estimator is used to develop robust control limits. Then evaluate the control chart performance using Average Run Length (ARL) and Standard Deviation Run Length (SDRL) with Monte Carlo simulation. Furthermore, the robust chart was applied to monitor the quality characteristics of the number of bacterial colonies in each aquaculture medicine product. The results obtained in this study are formed a control chart that is resistant to the existence of outliers and sensitive to shifts in the process of variability. |
doi_str_mv | 10.1088/1742-6596/1511/1/012054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569825412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569825412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-d3c78818bd4e9d8c876bb9f7bd26f2fb75313c3de165ea52c6bda19472f796833</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbVN0lz6uCzrjRUXvD2GNBft0m3WpBX239tSUQTBeZmBOefM8AFwirILlAmRIp7jhNGCpYgilKI0Qzij-R6YfG_2v2chDsFRjOssI33xCXhe2eB82KhGW-gdDL7sYgsXL3czqH3TBl9D_aZCC3sV_FChUmVVV-0OboPXNkbYxap5hY1vkmbIqaFRrToGB07V0Z589Sl4ulw8zq-T5f3VzXy2TDTBOE8M0VwIJEqT28IILTgry8Lx0mDmsCs5JYhoYixi1CqKNSuNQkXOseMFE4RMwdmY23_z3tnYyrXvQtOflJiyQmCaI9yr-KjSwccYrJPbUG1U2EmUyQGiHPDIAZUcIEokR4i9k4zOym9_ov93nf_hul3NH34L5dY48gk_gIFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569825412</pqid></control><display><type>article</type><title>Performance of robust EWMA control chart for variability process using non-normal data</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Prabawani, N A ; Mashuri, M ; Irhamah</creator><creatorcontrib>Prabawani, N A ; Mashuri, M ; Irhamah</creatorcontrib><description>The main purpose of quality control is to quickly detect the presence of assignable causes and shifts in the process so that an investigation of the process can be carry out as early as possible. The Shewhart control chart provides good performance when the observation data is normally distributed, whereas when the normality assumption is not met, a Robust control chart is needed. The performance of the control chart depends on the stability of the estimator used to estimate the process parameters and establish control limits in phase I. In this study, a Robust Exponentially Weighted Moving Average (EWMA) control chart will be present to monitor process variability using one of estimator Robust scale to estimate standard deviation. This estimator is used to develop robust control limits. Then evaluate the control chart performance using Average Run Length (ARL) and Standard Deviation Run Length (SDRL) with Monte Carlo simulation. Furthermore, the robust chart was applied to monitor the quality characteristics of the number of bacterial colonies in each aquaculture medicine product. The results obtained in this study are formed a control chart that is resistant to the existence of outliers and sensitive to shifts in the process of variability.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1511/1/012054</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aquaculture ; Control charts ; Control limits ; Control stability ; Monte Carlo simulation ; Outliers (statistics) ; Parameter estimation ; Physics ; Process parameters ; Quality control ; Robust control ; Standard deviation</subject><ispartof>Journal of physics. Conference series, 2020-03, Vol.1511 (1), p.12054</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3224-d3c78818bd4e9d8c876bb9f7bd26f2fb75313c3de165ea52c6bda19472f796833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1511/1/012054/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Prabawani, N A</creatorcontrib><creatorcontrib>Mashuri, M</creatorcontrib><creatorcontrib>Irhamah</creatorcontrib><title>Performance of robust EWMA control chart for variability process using non-normal data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The main purpose of quality control is to quickly detect the presence of assignable causes and shifts in the process so that an investigation of the process can be carry out as early as possible. The Shewhart control chart provides good performance when the observation data is normally distributed, whereas when the normality assumption is not met, a Robust control chart is needed. The performance of the control chart depends on the stability of the estimator used to estimate the process parameters and establish control limits in phase I. In this study, a Robust Exponentially Weighted Moving Average (EWMA) control chart will be present to monitor process variability using one of estimator Robust scale to estimate standard deviation. This estimator is used to develop robust control limits. Then evaluate the control chart performance using Average Run Length (ARL) and Standard Deviation Run Length (SDRL) with Monte Carlo simulation. Furthermore, the robust chart was applied to monitor the quality characteristics of the number of bacterial colonies in each aquaculture medicine product. The results obtained in this study are formed a control chart that is resistant to the existence of outliers and sensitive to shifts in the process of variability.</description><subject>Aquaculture</subject><subject>Control charts</subject><subject>Control limits</subject><subject>Control stability</subject><subject>Monte Carlo simulation</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Quality control</subject><subject>Robust control</subject><subject>Standard deviation</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbVN0lz6uCzrjRUXvD2GNBft0m3WpBX239tSUQTBeZmBOefM8AFwirILlAmRIp7jhNGCpYgilKI0Qzij-R6YfG_2v2chDsFRjOssI33xCXhe2eB82KhGW-gdDL7sYgsXL3czqH3TBl9D_aZCC3sV_FChUmVVV-0OboPXNkbYxap5hY1vkmbIqaFRrToGB07V0Z589Sl4ulw8zq-T5f3VzXy2TDTBOE8M0VwIJEqT28IILTgry8Lx0mDmsCs5JYhoYixi1CqKNSuNQkXOseMFE4RMwdmY23_z3tnYyrXvQtOflJiyQmCaI9yr-KjSwccYrJPbUG1U2EmUyQGiHPDIAZUcIEokR4i9k4zOym9_ov93nf_hul3NH34L5dY48gk_gIFY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Prabawani, N A</creator><creator>Mashuri, M</creator><creator>Irhamah</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200301</creationdate><title>Performance of robust EWMA control chart for variability process using non-normal data</title><author>Prabawani, N A ; Mashuri, M ; Irhamah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-d3c78818bd4e9d8c876bb9f7bd26f2fb75313c3de165ea52c6bda19472f796833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquaculture</topic><topic>Control charts</topic><topic>Control limits</topic><topic>Control stability</topic><topic>Monte Carlo simulation</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Quality control</topic><topic>Robust control</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prabawani, N A</creatorcontrib><creatorcontrib>Mashuri, M</creatorcontrib><creatorcontrib>Irhamah</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prabawani, N A</au><au>Mashuri, M</au><au>Irhamah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of robust EWMA control chart for variability process using non-normal data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>1511</volume><issue>1</issue><spage>12054</spage><pages>12054-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The main purpose of quality control is to quickly detect the presence of assignable causes and shifts in the process so that an investigation of the process can be carry out as early as possible. The Shewhart control chart provides good performance when the observation data is normally distributed, whereas when the normality assumption is not met, a Robust control chart is needed. The performance of the control chart depends on the stability of the estimator used to estimate the process parameters and establish control limits in phase I. In this study, a Robust Exponentially Weighted Moving Average (EWMA) control chart will be present to monitor process variability using one of estimator Robust scale to estimate standard deviation. This estimator is used to develop robust control limits. Then evaluate the control chart performance using Average Run Length (ARL) and Standard Deviation Run Length (SDRL) with Monte Carlo simulation. Furthermore, the robust chart was applied to monitor the quality characteristics of the number of bacterial colonies in each aquaculture medicine product. The results obtained in this study are formed a control chart that is resistant to the existence of outliers and sensitive to shifts in the process of variability.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1511/1/012054</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-03, Vol.1511 (1), p.12054 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2569825412 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aquaculture Control charts Control limits Control stability Monte Carlo simulation Outliers (statistics) Parameter estimation Physics Process parameters Quality control Robust control Standard deviation |
title | Performance of robust EWMA control chart for variability process using non-normal data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20robust%20EWMA%20control%20chart%20for%20variability%20process%20using%20non-normal%20data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Prabawani,%20N%20A&rft.date=2020-03-01&rft.volume=1511&rft.issue=1&rft.spage=12054&rft.pages=12054-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1511/1/012054&rft_dat=%3Cproquest_cross%3E2569825412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569825412&rft_id=info:pmid/&rfr_iscdi=true |