Interval min-plus algebraic structure and matrices over interval min-plus algebra

Max-plus algebra is the set ℝmax or ℝε=ℝ∪{ε} where ℝ is the set of all real number and ε = −∞ which is equipped with maximum (⊕) and plus (⊗) operations. The structure of max-plus algebra is semifield. Another semifield that can be learned is min-plus algebra. Min-plus algebra is the set ℝmin or ℝε′...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-03, Vol.1494 (1), p.12010
Hauptverfasser: Awallia, A R, Siswanto, Kurniawan, V Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12010
container_title Journal of physics. Conference series
container_volume 1494
creator Awallia, A R
Siswanto
Kurniawan, V Y
description Max-plus algebra is the set ℝmax or ℝε=ℝ∪{ε} where ℝ is the set of all real number and ε = −∞ which is equipped with maximum (⊕) and plus (⊗) operations. The structure of max-plus algebra is semifield. Another semifield that can be learned is min-plus algebra. Min-plus algebra is the set ℝmin or ℝε′=ℝ∪{ε′} where ε′ = ∞ which is equipped with minimum (⊕ ′) and plus (⊗) operations. Max-plus algebra has been generalized into interval max-plus algebra, so that min-plus algebra can be developed into an interval min-plus algebra. Interval min-plus algebra is defined as a set I ( ℝ ) ε ′ ={x=[ x _ , x ¯ ] | x _ , x ¯ ∈ℝ , x _ ≤ x ¯ < ε ′ } which have minimum (⊕¯′) and addition (⊗¯) operations. A matrix in which its components are the element of ℝε is called matrix over max-plus algebra. Matrices over max-plus algebra has been generalized into interval matrices in which its components are the element of I(ℝ)ε. This research will discusses the interval min-plus algebraic structure and matrices over interval min-plus algebra.
doi_str_mv 10.1088/1742-6596/1494/1/012010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569707327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569707327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-343f0e37a0c93c0c311aef388f1c468a714f9271e0a29308fe7d3b03c01b6d023</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOKefwYBvQu1d0jXpowydk4GK-hyyNJGOrq1JO_Db21KZCIr3cgf3-9_Bj5BzhCsEKWMUCYvSWZbGmGRJjDEgA4QDMtlvDvezlMfkJIQNAO9LTMjTsmqt3-mSbosqasouUF2-2bXXhaGh9Z1pO2-prnK61a0vjA203llPi79yp-TI6TLYs68-Ja-3Ny_zu2j1sFjOr1eR4UxCxBPuwHKhwWTcgOGI2joupUOTpFILTFzGBFrQLOMgnRU5X0OP4jrNgfEpuRjvNr5-72xo1abufNW_VGyWZgIEZ6KnxEgZX4fgrVONL7bafygENfhTgxk1WFKDP4Vq9NcnL8dkUTffp-8f588_QdXkrof5L_B_Lz4BcW1_Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569707327</pqid></control><display><type>article</type><title>Interval min-plus algebraic structure and matrices over interval min-plus algebra</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Awallia, A R ; Siswanto ; Kurniawan, V Y</creator><creatorcontrib>Awallia, A R ; Siswanto ; Kurniawan, V Y</creatorcontrib><description>Max-plus algebra is the set ℝmax or ℝε=ℝ∪{ε} where ℝ is the set of all real number and ε = −∞ which is equipped with maximum (⊕) and plus (⊗) operations. The structure of max-plus algebra is semifield. Another semifield that can be learned is min-plus algebra. Min-plus algebra is the set ℝmin or ℝε′=ℝ∪{ε′} where ε′ = ∞ which is equipped with minimum (⊕ ′) and plus (⊗) operations. Max-plus algebra has been generalized into interval max-plus algebra, so that min-plus algebra can be developed into an interval min-plus algebra. Interval min-plus algebra is defined as a set I ( ℝ ) ε ′ ={x=[ x _ , x ¯ ] | x _ , x ¯ ∈ℝ , x _ ≤ x ¯ &lt; ε ′ } which have minimum (⊕¯′) and addition (⊗¯) operations. A matrix in which its components are the element of ℝε is called matrix over max-plus algebra. Matrices over max-plus algebra has been generalized into interval matrices in which its components are the element of I(ℝ)ε. This research will discusses the interval min-plus algebraic structure and matrices over interval min-plus algebra.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1494/1/012010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algebra ; Matrix algebra ; Physics</subject><ispartof>Journal of physics. Conference series, 2020-03, Vol.1494 (1), p.12010</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3280-343f0e37a0c93c0c311aef388f1c468a714f9271e0a29308fe7d3b03c01b6d023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1494/1/012010/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Awallia, A R</creatorcontrib><creatorcontrib>Siswanto</creatorcontrib><creatorcontrib>Kurniawan, V Y</creatorcontrib><title>Interval min-plus algebraic structure and matrices over interval min-plus algebra</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Max-plus algebra is the set ℝmax or ℝε=ℝ∪{ε} where ℝ is the set of all real number and ε = −∞ which is equipped with maximum (⊕) and plus (⊗) operations. The structure of max-plus algebra is semifield. Another semifield that can be learned is min-plus algebra. Min-plus algebra is the set ℝmin or ℝε′=ℝ∪{ε′} where ε′ = ∞ which is equipped with minimum (⊕ ′) and plus (⊗) operations. Max-plus algebra has been generalized into interval max-plus algebra, so that min-plus algebra can be developed into an interval min-plus algebra. Interval min-plus algebra is defined as a set I ( ℝ ) ε ′ ={x=[ x _ , x ¯ ] | x _ , x ¯ ∈ℝ , x _ ≤ x ¯ &lt; ε ′ } which have minimum (⊕¯′) and addition (⊗¯) operations. A matrix in which its components are the element of ℝε is called matrix over max-plus algebra. Matrices over max-plus algebra has been generalized into interval matrices in which its components are the element of I(ℝ)ε. This research will discusses the interval min-plus algebraic structure and matrices over interval min-plus algebra.</description><subject>Algebra</subject><subject>Matrix algebra</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFFLwzAQx4MoOKefwYBvQu1d0jXpowydk4GK-hyyNJGOrq1JO_Db21KZCIr3cgf3-9_Bj5BzhCsEKWMUCYvSWZbGmGRJjDEgA4QDMtlvDvezlMfkJIQNAO9LTMjTsmqt3-mSbosqasouUF2-2bXXhaGh9Z1pO2-prnK61a0vjA203llPi79yp-TI6TLYs68-Ja-3Ny_zu2j1sFjOr1eR4UxCxBPuwHKhwWTcgOGI2joupUOTpFILTFzGBFrQLOMgnRU5X0OP4jrNgfEpuRjvNr5-72xo1abufNW_VGyWZgIEZ6KnxEgZX4fgrVONL7bafygENfhTgxk1WFKDP4Vq9NcnL8dkUTffp-8f588_QdXkrof5L_B_Lz4BcW1_Ow</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Awallia, A R</creator><creator>Siswanto</creator><creator>Kurniawan, V Y</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200301</creationdate><title>Interval min-plus algebraic structure and matrices over interval min-plus algebra</title><author>Awallia, A R ; Siswanto ; Kurniawan, V Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-343f0e37a0c93c0c311aef388f1c468a714f9271e0a29308fe7d3b03c01b6d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Matrix algebra</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awallia, A R</creatorcontrib><creatorcontrib>Siswanto</creatorcontrib><creatorcontrib>Kurniawan, V Y</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awallia, A R</au><au>Siswanto</au><au>Kurniawan, V Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval min-plus algebraic structure and matrices over interval min-plus algebra</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>1494</volume><issue>1</issue><spage>12010</spage><pages>12010-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Max-plus algebra is the set ℝmax or ℝε=ℝ∪{ε} where ℝ is the set of all real number and ε = −∞ which is equipped with maximum (⊕) and plus (⊗) operations. The structure of max-plus algebra is semifield. Another semifield that can be learned is min-plus algebra. Min-plus algebra is the set ℝmin or ℝε′=ℝ∪{ε′} where ε′ = ∞ which is equipped with minimum (⊕ ′) and plus (⊗) operations. Max-plus algebra has been generalized into interval max-plus algebra, so that min-plus algebra can be developed into an interval min-plus algebra. Interval min-plus algebra is defined as a set I ( ℝ ) ε ′ ={x=[ x _ , x ¯ ] | x _ , x ¯ ∈ℝ , x _ ≤ x ¯ &lt; ε ′ } which have minimum (⊕¯′) and addition (⊗¯) operations. A matrix in which its components are the element of ℝε is called matrix over max-plus algebra. Matrices over max-plus algebra has been generalized into interval matrices in which its components are the element of I(ℝ)ε. This research will discusses the interval min-plus algebraic structure and matrices over interval min-plus algebra.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1494/1/012010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-03, Vol.1494 (1), p.12010
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2569707327
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algebra
Matrix algebra
Physics
title Interval min-plus algebraic structure and matrices over interval min-plus algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20min-plus%20algebraic%20structure%20and%20matrices%20over%20interval%20min-plus%20algebra&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Awallia,%20A%20R&rft.date=2020-03-01&rft.volume=1494&rft.issue=1&rft.spage=12010&rft.pages=12010-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1494/1/012010&rft_dat=%3Cproquest_cross%3E2569707327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569707327&rft_id=info:pmid/&rfr_iscdi=true