Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization
Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis ha...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-09, Vol.182, p.791-798 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | |
container_start_page | 791 |
container_title | Carbon (New York) |
container_volume | 182 |
creator | Seo, Tae Hoon Lee, WonKi Lee, Kyu Seung Hwang, Jun Yeon Son, Dong Ick Ahn, Seokhoon Cho, Hyunjin Kim, Myung Jong |
description | Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds.
h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted] |
doi_str_mv | 10.1016/j.carbon.2021.06.080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321006679</els_id><sourcerecordid>2569692246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKffwIeAz63JbZs1Pgja-Q_GBFFfQ5omLGVNNOnE7dPbWZ99uvfCOedyfgidU5JSQtllmyoZau9SIEBTwlJSkgM0oeUsS7KS00M0IYSUCQPIjtFJjO1w5iXNJ-hl7jvrpOux8aGTvfUOe4NXyW0FS2zdfvuutssdNnbdxStcvc9x3Lp-paONWLoGq5UMUvU62N2v_xQdGbmO-uxvTtHb_d1r9Zgsnh-eqptFooDlfQK5hMbwnNKCAzeKNFQXzEBBFK9BSU7qWd3UmgOTmYYmV0VdEjbLJNMZo5BN0cWY-xH850bHXrR-E9zwUkDBOOMAORtU-ahSwccYtBEfwXYybAUlYk9PtGKkJ_b0BGFioDfYrkebHhp8WR1EVFY7pRsbtOpF4-3_AT9b6Hje</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692246</pqid></control><display><type>article</type><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</creator><creatorcontrib>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</creatorcontrib><description>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds.
h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.06.080</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Atomic structure ; Bandgap ; Boron ; Carbon ; Chemical bonds ; Chemical synthesis ; Chemical vapor deposition ; Electroluminescence ; Graphene ; h-BC2N ; Insulators ; Light emitting diodes ; Nitrogen atoms ; Optoelectronic application ; Photoluminescence ; Thin films</subject><ispartof>Carbon (New York), 2021-09, Vol.182, p.791-798</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</citedby><cites>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</cites><orcidid>0000-0002-7484-3081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.06.080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Seo, Tae Hoon</creatorcontrib><creatorcontrib>Lee, WonKi</creatorcontrib><creatorcontrib>Lee, Kyu Seung</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Son, Dong Ick</creatorcontrib><creatorcontrib>Ahn, Seokhoon</creatorcontrib><creatorcontrib>Cho, Hyunjin</creatorcontrib><creatorcontrib>Kim, Myung Jong</creatorcontrib><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><title>Carbon (New York)</title><description>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds.
h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</description><subject>Atomic structure</subject><subject>Bandgap</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Electroluminescence</subject><subject>Graphene</subject><subject>h-BC2N</subject><subject>Insulators</subject><subject>Light emitting diodes</subject><subject>Nitrogen atoms</subject><subject>Optoelectronic application</subject><subject>Photoluminescence</subject><subject>Thin films</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKffwIeAz63JbZs1Pgja-Q_GBFFfQ5omLGVNNOnE7dPbWZ99uvfCOedyfgidU5JSQtllmyoZau9SIEBTwlJSkgM0oeUsS7KS00M0IYSUCQPIjtFJjO1w5iXNJ-hl7jvrpOux8aGTvfUOe4NXyW0FS2zdfvuutssdNnbdxStcvc9x3Lp-paONWLoGq5UMUvU62N2v_xQdGbmO-uxvTtHb_d1r9Zgsnh-eqptFooDlfQK5hMbwnNKCAzeKNFQXzEBBFK9BSU7qWd3UmgOTmYYmV0VdEjbLJNMZo5BN0cWY-xH850bHXrR-E9zwUkDBOOMAORtU-ahSwccYtBEfwXYybAUlYk9PtGKkJ_b0BGFioDfYrkebHhp8WR1EVFY7pRsbtOpF4-3_AT9b6Hje</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Seo, Tae Hoon</creator><creator>Lee, WonKi</creator><creator>Lee, Kyu Seung</creator><creator>Hwang, Jun Yeon</creator><creator>Son, Dong Ick</creator><creator>Ahn, Seokhoon</creator><creator>Cho, Hyunjin</creator><creator>Kim, Myung Jong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7484-3081</orcidid></search><sort><creationdate>202109</creationdate><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><author>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic structure</topic><topic>Bandgap</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Electroluminescence</topic><topic>Graphene</topic><topic>h-BC2N</topic><topic>Insulators</topic><topic>Light emitting diodes</topic><topic>Nitrogen atoms</topic><topic>Optoelectronic application</topic><topic>Photoluminescence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Tae Hoon</creatorcontrib><creatorcontrib>Lee, WonKi</creatorcontrib><creatorcontrib>Lee, Kyu Seung</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Son, Dong Ick</creatorcontrib><creatorcontrib>Ahn, Seokhoon</creatorcontrib><creatorcontrib>Cho, Hyunjin</creatorcontrib><creatorcontrib>Kim, Myung Jong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Tae Hoon</au><au>Lee, WonKi</au><au>Lee, Kyu Seung</au><au>Hwang, Jun Yeon</au><au>Son, Dong Ick</au><au>Ahn, Seokhoon</au><au>Cho, Hyunjin</au><au>Kim, Myung Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</atitle><jtitle>Carbon (New York)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>791</spage><epage>798</epage><pages>791-798</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds.
h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.06.080</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7484-3081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-09, Vol.182, p.791-798 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2569692246 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Atomic structure Bandgap Boron Carbon Chemical bonds Chemical synthesis Chemical vapor deposition Electroluminescence Graphene h-BC2N Insulators Light emitting diodes Nitrogen atoms Optoelectronic application Photoluminescence Thin films |
title | Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominant%20formation%20of%20h-BC2N%20in%20h-BxCyNz%20films:%20CVD%20synthesis%20and%20characterization&rft.jtitle=Carbon%20(New%20York)&rft.au=Seo,%20Tae%20Hoon&rft.date=2021-09&rft.volume=182&rft.spage=791&rft.epage=798&rft.pages=791-798&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.06.080&rft_dat=%3Cproquest_cross%3E2569692246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692246&rft_id=info:pmid/&rft_els_id=S0008622321006679&rfr_iscdi=true |