Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization

Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-09, Vol.182, p.791-798
Hauptverfasser: Seo, Tae Hoon, Lee, WonKi, Lee, Kyu Seung, Hwang, Jun Yeon, Son, Dong Ick, Ahn, Seokhoon, Cho, Hyunjin, Kim, Myung Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue
container_start_page 791
container_title Carbon (New York)
container_volume 182
creator Seo, Tae Hoon
Lee, WonKi
Lee, Kyu Seung
Hwang, Jun Yeon
Son, Dong Ick
Ahn, Seokhoon
Cho, Hyunjin
Kim, Myung Jong
description Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds. h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]
doi_str_mv 10.1016/j.carbon.2021.06.080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321006679</els_id><sourcerecordid>2569692246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKffwIeAz63JbZs1Pgja-Q_GBFFfQ5omLGVNNOnE7dPbWZ99uvfCOedyfgidU5JSQtllmyoZau9SIEBTwlJSkgM0oeUsS7KS00M0IYSUCQPIjtFJjO1w5iXNJ-hl7jvrpOux8aGTvfUOe4NXyW0FS2zdfvuutssdNnbdxStcvc9x3Lp-paONWLoGq5UMUvU62N2v_xQdGbmO-uxvTtHb_d1r9Zgsnh-eqptFooDlfQK5hMbwnNKCAzeKNFQXzEBBFK9BSU7qWd3UmgOTmYYmV0VdEjbLJNMZo5BN0cWY-xH850bHXrR-E9zwUkDBOOMAORtU-ahSwccYtBEfwXYybAUlYk9PtGKkJ_b0BGFioDfYrkebHhp8WR1EVFY7pRsbtOpF4-3_AT9b6Hje</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692246</pqid></control><display><type>article</type><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</creator><creatorcontrib>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</creatorcontrib><description>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds. h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.06.080</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Atomic structure ; Bandgap ; Boron ; Carbon ; Chemical bonds ; Chemical synthesis ; Chemical vapor deposition ; Electroluminescence ; Graphene ; h-BC2N ; Insulators ; Light emitting diodes ; Nitrogen atoms ; Optoelectronic application ; Photoluminescence ; Thin films</subject><ispartof>Carbon (New York), 2021-09, Vol.182, p.791-798</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</citedby><cites>FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</cites><orcidid>0000-0002-7484-3081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.06.080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Seo, Tae Hoon</creatorcontrib><creatorcontrib>Lee, WonKi</creatorcontrib><creatorcontrib>Lee, Kyu Seung</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Son, Dong Ick</creatorcontrib><creatorcontrib>Ahn, Seokhoon</creatorcontrib><creatorcontrib>Cho, Hyunjin</creatorcontrib><creatorcontrib>Kim, Myung Jong</creatorcontrib><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><title>Carbon (New York)</title><description>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds. h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</description><subject>Atomic structure</subject><subject>Bandgap</subject><subject>Boron</subject><subject>Carbon</subject><subject>Chemical bonds</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Electroluminescence</subject><subject>Graphene</subject><subject>h-BC2N</subject><subject>Insulators</subject><subject>Light emitting diodes</subject><subject>Nitrogen atoms</subject><subject>Optoelectronic application</subject><subject>Photoluminescence</subject><subject>Thin films</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKffwIeAz63JbZs1Pgja-Q_GBFFfQ5omLGVNNOnE7dPbWZ99uvfCOedyfgidU5JSQtllmyoZau9SIEBTwlJSkgM0oeUsS7KS00M0IYSUCQPIjtFJjO1w5iXNJ-hl7jvrpOux8aGTvfUOe4NXyW0FS2zdfvuutssdNnbdxStcvc9x3Lp-paONWLoGq5UMUvU62N2v_xQdGbmO-uxvTtHb_d1r9Zgsnh-eqptFooDlfQK5hMbwnNKCAzeKNFQXzEBBFK9BSU7qWd3UmgOTmYYmV0VdEjbLJNMZo5BN0cWY-xH850bHXrR-E9zwUkDBOOMAORtU-ahSwccYtBEfwXYybAUlYk9PtGKkJ_b0BGFioDfYrkebHhp8WR1EVFY7pRsbtOpF4-3_AT9b6Hje</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Seo, Tae Hoon</creator><creator>Lee, WonKi</creator><creator>Lee, Kyu Seung</creator><creator>Hwang, Jun Yeon</creator><creator>Son, Dong Ick</creator><creator>Ahn, Seokhoon</creator><creator>Cho, Hyunjin</creator><creator>Kim, Myung Jong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7484-3081</orcidid></search><sort><creationdate>202109</creationdate><title>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</title><author>Seo, Tae Hoon ; Lee, WonKi ; Lee, Kyu Seung ; Hwang, Jun Yeon ; Son, Dong Ick ; Ahn, Seokhoon ; Cho, Hyunjin ; Kim, Myung Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-24a2df94115929fc0d1e56f250c9b2ca90b7bdbe926a3e2d4c5b80673a6e36123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic structure</topic><topic>Bandgap</topic><topic>Boron</topic><topic>Carbon</topic><topic>Chemical bonds</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Electroluminescence</topic><topic>Graphene</topic><topic>h-BC2N</topic><topic>Insulators</topic><topic>Light emitting diodes</topic><topic>Nitrogen atoms</topic><topic>Optoelectronic application</topic><topic>Photoluminescence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Tae Hoon</creatorcontrib><creatorcontrib>Lee, WonKi</creatorcontrib><creatorcontrib>Lee, Kyu Seung</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Son, Dong Ick</creatorcontrib><creatorcontrib>Ahn, Seokhoon</creatorcontrib><creatorcontrib>Cho, Hyunjin</creatorcontrib><creatorcontrib>Kim, Myung Jong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Tae Hoon</au><au>Lee, WonKi</au><au>Lee, Kyu Seung</au><au>Hwang, Jun Yeon</au><au>Son, Dong Ick</au><au>Ahn, Seokhoon</au><au>Cho, Hyunjin</au><au>Kim, Myung Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization</atitle><jtitle>Carbon (New York)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>791</spage><epage>798</epage><pages>791-798</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Arranging carbon, boron, and nitrogen atoms in a sp2 network can give rise to tunable electronic properties from insulators (h-BN) to metals (graphene). For semiconductor applications, the construction of a ternary structure (h-BxCyNz) is highly desirable, but its uniform and large-area synthesis has remained a great challenge. This challenge has been attempted by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine where boron, carbon, and nitrogen atoms are covalently bonded, onto Ni catalysts in conjunction with the quenching method after the synthesis. The atomic structure closely resembles h-BC2N as revealed by XPS (B:C:N ∼ 1:1.8:1) and nanometer resolution EELS mapping, and the photoluminescence and electroluminescence observed from the h-BC2N film were in agreement, proving its well-established bandgap of 2.15 eV. As a practical application, the utilization of h-BC2N film for 2D light emitting diodes was demonstrated. Though films might have impurities such as small h-BN fragments and h-BxCyNz other than h-BC2N phase, we believe that this work provide a starting point of controlling the ternary BCN compounds that retain sp2 hybridized chemical bonds. h-BC2N has been synthesized by a facile chemical vapor deposition method with a single molecular precursor, N-tri-methyl borazine. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.06.080</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7484-3081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-09, Vol.182, p.791-798
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2569692246
source ScienceDirect Journals (5 years ago - present)
subjects Atomic structure
Bandgap
Boron
Carbon
Chemical bonds
Chemical synthesis
Chemical vapor deposition
Electroluminescence
Graphene
h-BC2N
Insulators
Light emitting diodes
Nitrogen atoms
Optoelectronic application
Photoluminescence
Thin films
title Dominant formation of h-BC2N in h-BxCyNz films: CVD synthesis and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominant%20formation%20of%20h-BC2N%20in%20h-BxCyNz%20films:%20CVD%20synthesis%20and%20characterization&rft.jtitle=Carbon%20(New%20York)&rft.au=Seo,%20Tae%20Hoon&rft.date=2021-09&rft.volume=182&rft.spage=791&rft.epage=798&rft.pages=791-798&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.06.080&rft_dat=%3Cproquest_cross%3E2569692246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692246&rft_id=info:pmid/&rft_els_id=S0008622321006679&rfr_iscdi=true