An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery

Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-09, Vol.182, p.749-757
Hauptverfasser: Fan, Xiaoming, Wang, Zihan, Cai, Ting, Yang, Yongsan, Wu, Hongchang, Cao, Shuai, Yang, Zeheng, Zhang, Weixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue
container_start_page 749
container_title Carbon (New York)
container_volume 182
creator Fan, Xiaoming
Wang, Zihan
Cai, Ting
Yang, Yongsan
Wu, Hongchang
Cao, Shuai
Yang, Zeheng
Zhang, Weixin
description Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use. [Display omitted]
doi_str_mv 10.1016/j.carbon.2021.06.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321006527</els_id><sourcerecordid>2569692075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oAdBz05Xkq04l0IIfUGgl_YsJHkdKzhyKisFf0L_ujLOubCwDDOzww4h9wwWDJh83C-sDqbzCw6cLUCmKS7IjJVLkYlyxS7JDADKTHIurslN3-8TzEuWz8jv2lPnI-6CjljRxu2adqB91KZFqn1XIUU_goqagU4x1CcingxmAZ2vu2ATq9s2O9PG-QoDTUTyNtqP9BFDwocRpDzauti40yFzo1zHiGG4JVe1bnu8O-85-Xp5_ty8ZduP1_fNeptZISBmArS0NXBdMWEs1zWwUtRMol0ZLKHQMl9Ko1GUS1NURc2h4KZgEqxmpjRazMnDdPcYuu8T9lHtu1PwKVLxQq7kisOySKp8UtnQ9X3AWh2DO-gwKAZqLF3t1fSuGktXINOMtqfJhumDH4dB9dbh2IALaKOqOvf_gT96nI9x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692075</pqid></control><display><type>article</type><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</creator><creatorcontrib>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</creatorcontrib><description>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.06.065</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>All-carbon binder ; Alloys ; Anode ; Anode effect ; Carbon ; Carbon composite ; Carbon nanotube ; Carbon nanotubes ; Cohesive ability ; Cycles ; Decay rate ; Electric contacts ; Electrode materials ; Heat treatment ; Lithium-ion batteries ; Lithium-ion battery ; Nanotubes ; Particle decay ; Polyvinylidene fluorides ; Rechargeable batteries ; Structural stability ; Tin dioxide</subject><ispartof>Carbon (New York), 2021-09, Vol.182, p.749-757</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</citedby><cites>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</cites><orcidid>0000-0001-6979-8901 ; 0000-0003-0746-0117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.06.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Fan, Xiaoming</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Cai, Ting</creatorcontrib><creatorcontrib>Yang, Yongsan</creatorcontrib><creatorcontrib>Wu, Hongchang</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Yang, Zeheng</creatorcontrib><creatorcontrib>Zhang, Weixin</creatorcontrib><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><title>Carbon (New York)</title><description>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use. [Display omitted]</description><subject>All-carbon binder</subject><subject>Alloys</subject><subject>Anode</subject><subject>Anode effect</subject><subject>Carbon</subject><subject>Carbon composite</subject><subject>Carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Cohesive ability</subject><subject>Cycles</subject><subject>Decay rate</subject><subject>Electric contacts</subject><subject>Electrode materials</subject><subject>Heat treatment</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Nanotubes</subject><subject>Particle decay</subject><subject>Polyvinylidene fluorides</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Tin dioxide</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpmn_oAdBz05Xkq04l0IIfUGgl_YsJHkdKzhyKisFf0L_ujLOubCwDDOzww4h9wwWDJh83C-sDqbzCw6cLUCmKS7IjJVLkYlyxS7JDADKTHIurslN3-8TzEuWz8jv2lPnI-6CjljRxu2adqB91KZFqn1XIUU_goqagU4x1CcingxmAZ2vu2ATq9s2O9PG-QoDTUTyNtqP9BFDwocRpDzauti40yFzo1zHiGG4JVe1bnu8O-85-Xp5_ty8ZduP1_fNeptZISBmArS0NXBdMWEs1zWwUtRMol0ZLKHQMl9Ko1GUS1NURc2h4KZgEqxmpjRazMnDdPcYuu8T9lHtu1PwKVLxQq7kisOySKp8UtnQ9X3AWh2DO-gwKAZqLF3t1fSuGktXINOMtqfJhumDH4dB9dbh2IALaKOqOvf_gT96nI9x</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Fan, Xiaoming</creator><creator>Wang, Zihan</creator><creator>Cai, Ting</creator><creator>Yang, Yongsan</creator><creator>Wu, Hongchang</creator><creator>Cao, Shuai</creator><creator>Yang, Zeheng</creator><creator>Zhang, Weixin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6979-8901</orcidid><orcidid>https://orcid.org/0000-0003-0746-0117</orcidid></search><sort><creationdate>202109</creationdate><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><author>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>All-carbon binder</topic><topic>Alloys</topic><topic>Anode</topic><topic>Anode effect</topic><topic>Carbon</topic><topic>Carbon composite</topic><topic>Carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Cohesive ability</topic><topic>Cycles</topic><topic>Decay rate</topic><topic>Electric contacts</topic><topic>Electrode materials</topic><topic>Heat treatment</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Nanotubes</topic><topic>Particle decay</topic><topic>Polyvinylidene fluorides</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiaoming</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Cai, Ting</creatorcontrib><creatorcontrib>Yang, Yongsan</creatorcontrib><creatorcontrib>Wu, Hongchang</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Yang, Zeheng</creatorcontrib><creatorcontrib>Zhang, Weixin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiaoming</au><au>Wang, Zihan</au><au>Cai, Ting</au><au>Yang, Yongsan</au><au>Wu, Hongchang</au><au>Cao, Shuai</au><au>Yang, Zeheng</au><au>Zhang, Weixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</atitle><jtitle>Carbon (New York)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>749</spage><epage>757</epage><pages>749-757</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.06.065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6979-8901</orcidid><orcidid>https://orcid.org/0000-0003-0746-0117</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-09, Vol.182, p.749-757
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2569692075
source Elsevier ScienceDirect Journals
subjects All-carbon binder
Alloys
Anode
Anode effect
Carbon
Carbon composite
Carbon nanotube
Carbon nanotubes
Cohesive ability
Cycles
Decay rate
Electric contacts
Electrode materials
Heat treatment
Lithium-ion batteries
Lithium-ion battery
Nanotubes
Particle decay
Polyvinylidene fluorides
Rechargeable batteries
Structural stability
Tin dioxide
title An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20highly%20stable%20anode%20enabled%20by%20carbon%20nanotube-reinforced%20all-carbon%20binder%20for%20enhanced%20performance%20in%20lithium-ion%20battery&rft.jtitle=Carbon%20(New%20York)&rft.au=Fan,%20Xiaoming&rft.date=2021-09&rft.volume=182&rft.spage=749&rft.epage=757&rft.pages=749-757&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.06.065&rft_dat=%3Cproquest_cross%3E2569692075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692075&rft_id=info:pmid/&rft_els_id=S0008622321006527&rfr_iscdi=true