An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery
Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-09, Vol.182, p.749-757 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 757 |
---|---|
container_issue | |
container_start_page | 749 |
container_title | Carbon (New York) |
container_volume | 182 |
creator | Fan, Xiaoming Wang, Zihan Cai, Ting Yang, Yongsan Wu, Hongchang Cao, Shuai Yang, Zeheng Zhang, Weixin |
description | Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2021.06.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321006527</els_id><sourcerecordid>2569692075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oAdBz05Xkq04l0IIfUGgl_YsJHkdKzhyKisFf0L_ujLOubCwDDOzww4h9wwWDJh83C-sDqbzCw6cLUCmKS7IjJVLkYlyxS7JDADKTHIurslN3-8TzEuWz8jv2lPnI-6CjljRxu2adqB91KZFqn1XIUU_goqagU4x1CcingxmAZ2vu2ATq9s2O9PG-QoDTUTyNtqP9BFDwocRpDzauti40yFzo1zHiGG4JVe1bnu8O-85-Xp5_ty8ZduP1_fNeptZISBmArS0NXBdMWEs1zWwUtRMol0ZLKHQMl9Ko1GUS1NURc2h4KZgEqxmpjRazMnDdPcYuu8T9lHtu1PwKVLxQq7kisOySKp8UtnQ9X3AWh2DO-gwKAZqLF3t1fSuGktXINOMtqfJhumDH4dB9dbh2IALaKOqOvf_gT96nI9x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692075</pqid></control><display><type>article</type><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><source>Elsevier ScienceDirect Journals</source><creator>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</creator><creatorcontrib>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</creatorcontrib><description>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.06.065</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>All-carbon binder ; Alloys ; Anode ; Anode effect ; Carbon ; Carbon composite ; Carbon nanotube ; Carbon nanotubes ; Cohesive ability ; Cycles ; Decay rate ; Electric contacts ; Electrode materials ; Heat treatment ; Lithium-ion batteries ; Lithium-ion battery ; Nanotubes ; Particle decay ; Polyvinylidene fluorides ; Rechargeable batteries ; Structural stability ; Tin dioxide</subject><ispartof>Carbon (New York), 2021-09, Vol.182, p.749-757</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</citedby><cites>FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</cites><orcidid>0000-0001-6979-8901 ; 0000-0003-0746-0117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.06.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Fan, Xiaoming</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Cai, Ting</creatorcontrib><creatorcontrib>Yang, Yongsan</creatorcontrib><creatorcontrib>Wu, Hongchang</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Yang, Zeheng</creatorcontrib><creatorcontrib>Zhang, Weixin</creatorcontrib><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><title>Carbon (New York)</title><description>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use.
[Display omitted]</description><subject>All-carbon binder</subject><subject>Alloys</subject><subject>Anode</subject><subject>Anode effect</subject><subject>Carbon</subject><subject>Carbon composite</subject><subject>Carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Cohesive ability</subject><subject>Cycles</subject><subject>Decay rate</subject><subject>Electric contacts</subject><subject>Electrode materials</subject><subject>Heat treatment</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Nanotubes</subject><subject>Particle decay</subject><subject>Polyvinylidene fluorides</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Tin dioxide</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpmn_oAdBz05Xkq04l0IIfUGgl_YsJHkdKzhyKisFf0L_ujLOubCwDDOzww4h9wwWDJh83C-sDqbzCw6cLUCmKS7IjJVLkYlyxS7JDADKTHIurslN3-8TzEuWz8jv2lPnI-6CjljRxu2adqB91KZFqn1XIUU_goqagU4x1CcingxmAZ2vu2ATq9s2O9PG-QoDTUTyNtqP9BFDwocRpDzauti40yFzo1zHiGG4JVe1bnu8O-85-Xp5_ty8ZduP1_fNeptZISBmArS0NXBdMWEs1zWwUtRMol0ZLKHQMl9Ko1GUS1NURc2h4KZgEqxmpjRazMnDdPcYuu8T9lHtu1PwKVLxQq7kisOySKp8UtnQ9X3AWh2DO-gwKAZqLF3t1fSuGktXINOMtqfJhumDH4dB9dbh2IALaKOqOvf_gT96nI9x</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Fan, Xiaoming</creator><creator>Wang, Zihan</creator><creator>Cai, Ting</creator><creator>Yang, Yongsan</creator><creator>Wu, Hongchang</creator><creator>Cao, Shuai</creator><creator>Yang, Zeheng</creator><creator>Zhang, Weixin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6979-8901</orcidid><orcidid>https://orcid.org/0000-0003-0746-0117</orcidid></search><sort><creationdate>202109</creationdate><title>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</title><author>Fan, Xiaoming ; Wang, Zihan ; Cai, Ting ; Yang, Yongsan ; Wu, Hongchang ; Cao, Shuai ; Yang, Zeheng ; Zhang, Weixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-30a6cf02ad13bc2af0183f16ec9be805a6476bae387b5d5f2052b5160ca1b8ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>All-carbon binder</topic><topic>Alloys</topic><topic>Anode</topic><topic>Anode effect</topic><topic>Carbon</topic><topic>Carbon composite</topic><topic>Carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Cohesive ability</topic><topic>Cycles</topic><topic>Decay rate</topic><topic>Electric contacts</topic><topic>Electrode materials</topic><topic>Heat treatment</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Nanotubes</topic><topic>Particle decay</topic><topic>Polyvinylidene fluorides</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiaoming</creatorcontrib><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Cai, Ting</creatorcontrib><creatorcontrib>Yang, Yongsan</creatorcontrib><creatorcontrib>Wu, Hongchang</creatorcontrib><creatorcontrib>Cao, Shuai</creatorcontrib><creatorcontrib>Yang, Zeheng</creatorcontrib><creatorcontrib>Zhang, Weixin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiaoming</au><au>Wang, Zihan</au><au>Cai, Ting</au><au>Yang, Yongsan</au><au>Wu, Hongchang</au><au>Cao, Shuai</au><au>Yang, Zeheng</au><au>Zhang, Weixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery</atitle><jtitle>Carbon (New York)</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>749</spage><epage>757</epage><pages>749-757</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Conversion and alloy-type anode materials suffer from large volume expansion during lithiation process, which causes the destruction of intact electrode structure and loss of efficient electrical contact between current collector and particles of anode material, resulting in fast capacity decay and poor cycling stability. Herein, a combined slurry-casting and heat-treatment approach has been adopted to prepare highly stable integrated anode composed of anode materials particles and all-carbon binder consisting of commercial carbon nanotubes (CNTs) and polyvinylidene fluoride (PVDF) derived carbon. This all-carbon binder shows a strong cohesive ability to copper current collector compared with traditional PVDF binder, and could effectively bind anode material particles and current collector. Moreover, CNTs reinforced all-carbon binder provides a robust mechanical and high conductive network to ensure structural stability of integrated anode, in which volume expansion of anode materials could be effectively suppressed during lithiation process. The integrated electrode with tin dioxide and silicon as active materials exhibits remarkable long-term cycling stability, maintaining 861.4 mA h g−1 after 500 cycles and 902.4 mA h g−1 after 300 cycles at 0.5C, respectively. This simple yet effective strategy is compatible with the traditional anode manufacture process, demonstrating its great potential in the practical use.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.06.065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6979-8901</orcidid><orcidid>https://orcid.org/0000-0003-0746-0117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-09, Vol.182, p.749-757 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2569692075 |
source | Elsevier ScienceDirect Journals |
subjects | All-carbon binder Alloys Anode Anode effect Carbon Carbon composite Carbon nanotube Carbon nanotubes Cohesive ability Cycles Decay rate Electric contacts Electrode materials Heat treatment Lithium-ion batteries Lithium-ion battery Nanotubes Particle decay Polyvinylidene fluorides Rechargeable batteries Structural stability Tin dioxide |
title | An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20highly%20stable%20anode%20enabled%20by%20carbon%20nanotube-reinforced%20all-carbon%20binder%20for%20enhanced%20performance%20in%20lithium-ion%20battery&rft.jtitle=Carbon%20(New%20York)&rft.au=Fan,%20Xiaoming&rft.date=2021-09&rft.volume=182&rft.spage=749&rft.epage=757&rft.pages=749-757&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.06.065&rft_dat=%3Cproquest_cross%3E2569692075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692075&rft_id=info:pmid/&rft_els_id=S0008622321006527&rfr_iscdi=true |