Design and experimental research of a temperature sensor applied to surface air temperature monitoring

•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2021-09, Vol.182, p.109719, Article 109719
Hauptverfasser: Yang, Jie, Ge, Xiangjian, Liu, Qingquan, Sun, Zhonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109719
container_title Measurement : journal of the International Measurement Confederation
container_volume 182
creator Yang, Jie
Ge, Xiangjian
Liu, Qingquan
Sun, Zhonglin
description •An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction. Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.
doi_str_mv 10.1016/j.measurement.2021.109719
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121006813</els_id><sourcerecordid>2569692037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKv_IeJ6ah6TyWQp9QmCGwV3Ic3c1AztZExS0X9vyrjQnasL9557Dt9B6JySBSW0uewXWzBpF2ELQ14wwmjZK0nVAZrRVvKqpuz1EM0Ia3jFWE2P0UlKPSGk4aqZIXcNya8HbIYOw-cI0e-NzAZHSGCifcPBYYMzbMvN5BKEEwwpRGzGceOhwzngku-MBWx8_KPchsHnEP2wPkVHzmwSnP3MOXq5vXle3lePT3cPy6vHyvJa5UpRa6Qg3LV21QG07UpQ6awSwrYMpKuFqAubBalEQa05WC6caRyTlKyk4HN0MfmOMbzvIGXdh10cSqRmolGNYoTLolKTysaQUgSnx8Jt4pemRO9r1b3-Vave16qnWsvvcvqFgvHhIepkPQwWOh_BZt0F_w-Xb8DkiMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692037</pqid></control><display><type>article</type><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</creator><creatorcontrib>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</creatorcontrib><description>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction. Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109719</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Aerodynamics ; Air monitoring ; Air temperature ; Atmospheric temperature ; Computational fluid dynamics ; Correlation coefficients ; Error correction ; Fluid dynamics ; Heat transfer ; Multi-layer perceptron network ; Multilayers ; Radiation ; Radiation error ; Root-mean-square errors ; Sensors ; Solar radiation ; Studies ; Temperature ; Temperature sensor ; Temperature sensors</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109719, Article 109719</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</citedby><cites>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2021.109719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ge, Xiangjian</creatorcontrib><creatorcontrib>Liu, Qingquan</creatorcontrib><creatorcontrib>Sun, Zhonglin</creatorcontrib><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><title>Measurement : journal of the International Measurement Confederation</title><description>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction. Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</description><subject>Aerodynamics</subject><subject>Air monitoring</subject><subject>Air temperature</subject><subject>Atmospheric temperature</subject><subject>Computational fluid dynamics</subject><subject>Correlation coefficients</subject><subject>Error correction</subject><subject>Fluid dynamics</subject><subject>Heat transfer</subject><subject>Multi-layer perceptron network</subject><subject>Multilayers</subject><subject>Radiation</subject><subject>Radiation error</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature sensor</subject><subject>Temperature sensors</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKv_IeJ6ah6TyWQp9QmCGwV3Ic3c1AztZExS0X9vyrjQnasL9557Dt9B6JySBSW0uewXWzBpF2ELQ14wwmjZK0nVAZrRVvKqpuz1EM0Ia3jFWE2P0UlKPSGk4aqZIXcNya8HbIYOw-cI0e-NzAZHSGCifcPBYYMzbMvN5BKEEwwpRGzGceOhwzngku-MBWx8_KPchsHnEP2wPkVHzmwSnP3MOXq5vXle3lePT3cPy6vHyvJa5UpRa6Qg3LV21QG07UpQ6awSwrYMpKuFqAubBalEQa05WC6caRyTlKyk4HN0MfmOMbzvIGXdh10cSqRmolGNYoTLolKTysaQUgSnx8Jt4pemRO9r1b3-Vave16qnWsvvcvqFgvHhIepkPQwWOh_BZt0F_w-Xb8DkiMw</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Yang, Jie</creator><creator>Ge, Xiangjian</creator><creator>Liu, Qingquan</creator><creator>Sun, Zhonglin</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><author>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air monitoring</topic><topic>Air temperature</topic><topic>Atmospheric temperature</topic><topic>Computational fluid dynamics</topic><topic>Correlation coefficients</topic><topic>Error correction</topic><topic>Fluid dynamics</topic><topic>Heat transfer</topic><topic>Multi-layer perceptron network</topic><topic>Multilayers</topic><topic>Radiation</topic><topic>Radiation error</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature sensor</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ge, Xiangjian</creatorcontrib><creatorcontrib>Liu, Qingquan</creatorcontrib><creatorcontrib>Sun, Zhonglin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Ge, Xiangjian</au><au>Liu, Qingquan</au><au>Sun, Zhonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>109719</spage><pages>109719-</pages><artnum>109719</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction. Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109719</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109719, Article 109719
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2569692037
source Elsevier ScienceDirect Journals Complete
subjects Aerodynamics
Air monitoring
Air temperature
Atmospheric temperature
Computational fluid dynamics
Correlation coefficients
Error correction
Fluid dynamics
Heat transfer
Multi-layer perceptron network
Multilayers
Radiation
Radiation error
Root-mean-square errors
Sensors
Solar radiation
Studies
Temperature
Temperature sensor
Temperature sensors
title Design and experimental research of a temperature sensor applied to surface air temperature monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20experimental%20research%20of%20a%20temperature%20sensor%20applied%20to%20surface%20air%20temperature%20monitoring&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Yang,%20Jie&rft.date=2021-09&rft.volume=182&rft.spage=109719&rft.pages=109719-&rft.artnum=109719&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109719&rft_dat=%3Cproquest_cross%3E2569692037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692037&rft_id=info:pmid/&rft_els_id=S0263224121006813&rfr_iscdi=true