Design and experimental research of a temperature sensor applied to surface air temperature monitoring
•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of ma...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2021-09, Vol.182, p.109719, Article 109719 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109719 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 182 |
creator | Yang, Jie Ge, Xiangjian Liu, Qingquan Sun, Zhonglin |
description | •An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction.
Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively. |
doi_str_mv | 10.1016/j.measurement.2021.109719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569692037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121006813</els_id><sourcerecordid>2569692037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKv_IeJ6ah6TyWQp9QmCGwV3Ic3c1AztZExS0X9vyrjQnasL9557Dt9B6JySBSW0uewXWzBpF2ELQ14wwmjZK0nVAZrRVvKqpuz1EM0Ia3jFWE2P0UlKPSGk4aqZIXcNya8HbIYOw-cI0e-NzAZHSGCifcPBYYMzbMvN5BKEEwwpRGzGceOhwzngku-MBWx8_KPchsHnEP2wPkVHzmwSnP3MOXq5vXle3lePT3cPy6vHyvJa5UpRa6Qg3LV21QG07UpQ6awSwrYMpKuFqAubBalEQa05WC6caRyTlKyk4HN0MfmOMbzvIGXdh10cSqRmolGNYoTLolKTysaQUgSnx8Jt4pemRO9r1b3-Vave16qnWsvvcvqFgvHhIepkPQwWOh_BZt0F_w-Xb8DkiMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569692037</pqid></control><display><type>article</type><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</creator><creatorcontrib>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</creatorcontrib><description>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction.
Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109719</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Aerodynamics ; Air monitoring ; Air temperature ; Atmospheric temperature ; Computational fluid dynamics ; Correlation coefficients ; Error correction ; Fluid dynamics ; Heat transfer ; Multi-layer perceptron network ; Multilayers ; Radiation ; Radiation error ; Root-mean-square errors ; Sensors ; Solar radiation ; Studies ; Temperature ; Temperature sensor ; Temperature sensors</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109719, Article 109719</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</citedby><cites>FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2021.109719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ge, Xiangjian</creatorcontrib><creatorcontrib>Liu, Qingquan</creatorcontrib><creatorcontrib>Sun, Zhonglin</creatorcontrib><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><title>Measurement : journal of the International Measurement Confederation</title><description>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction.
Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</description><subject>Aerodynamics</subject><subject>Air monitoring</subject><subject>Air temperature</subject><subject>Atmospheric temperature</subject><subject>Computational fluid dynamics</subject><subject>Correlation coefficients</subject><subject>Error correction</subject><subject>Fluid dynamics</subject><subject>Heat transfer</subject><subject>Multi-layer perceptron network</subject><subject>Multilayers</subject><subject>Radiation</subject><subject>Radiation error</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>Temperature</subject><subject>Temperature sensor</subject><subject>Temperature sensors</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKv_IeJ6ah6TyWQp9QmCGwV3Ic3c1AztZExS0X9vyrjQnasL9557Dt9B6JySBSW0uewXWzBpF2ELQ14wwmjZK0nVAZrRVvKqpuz1EM0Ia3jFWE2P0UlKPSGk4aqZIXcNya8HbIYOw-cI0e-NzAZHSGCifcPBYYMzbMvN5BKEEwwpRGzGceOhwzngku-MBWx8_KPchsHnEP2wPkVHzmwSnP3MOXq5vXle3lePT3cPy6vHyvJa5UpRa6Qg3LV21QG07UpQ6awSwrYMpKuFqAubBalEQa05WC6caRyTlKyk4HN0MfmOMbzvIGXdh10cSqRmolGNYoTLolKTysaQUgSnx8Jt4pemRO9r1b3-Vave16qnWsvvcvqFgvHhIepkPQwWOh_BZt0F_w-Xb8DkiMw</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Yang, Jie</creator><creator>Ge, Xiangjian</creator><creator>Liu, Qingquan</creator><creator>Sun, Zhonglin</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</title><author>Yang, Jie ; Ge, Xiangjian ; Liu, Qingquan ; Sun, Zhonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-91ca7503f8cbdee88b517fc955c82e7f4554719ce79502143ec35fa6f2710b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air monitoring</topic><topic>Air temperature</topic><topic>Atmospheric temperature</topic><topic>Computational fluid dynamics</topic><topic>Correlation coefficients</topic><topic>Error correction</topic><topic>Fluid dynamics</topic><topic>Heat transfer</topic><topic>Multi-layer perceptron network</topic><topic>Multilayers</topic><topic>Radiation</topic><topic>Radiation error</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>Temperature</topic><topic>Temperature sensor</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ge, Xiangjian</creatorcontrib><creatorcontrib>Liu, Qingquan</creatorcontrib><creatorcontrib>Sun, Zhonglin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Ge, Xiangjian</au><au>Liu, Qingquan</au><au>Sun, Zhonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and experimental research of a temperature sensor applied to surface air temperature monitoring</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>109719</spage><pages>109719-</pages><artnum>109719</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•An airflow deflector is proposed to enhance air circulation.•A CFD method is employed to quantify the radiation error of the sensor.•A MLP network is used to form a universal radiation error correction method.•The radiation error of the sensor may be reduced to 0.1 °C.•The error is 1–2 orders of magnitude lower than the same sensors without correction.
Due to the solar radiation effect, current air temperature sensors may produce a radiation error that is on the order of 1 °C. In this paper, a temperature sensor with a new structure is proposed. Initially, a computational fluid dynamics (CFD) method is employed to quantify the radiation errors for the sensor under various environmental conditions. Then, a radiation error correction method is obtained by using a multi-layer perceptron (MLP) network. Finally, air temperature observation experiments are performed. The experimental results demonstrate that the mean radiation error is 0.07 °C. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) between the calculated radiation errors and the measured radiation errors are 0.027 °C, 0.034 °C, and 0.443, respectively.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109719</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109719, Article 109719 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2569692037 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aerodynamics Air monitoring Air temperature Atmospheric temperature Computational fluid dynamics Correlation coefficients Error correction Fluid dynamics Heat transfer Multi-layer perceptron network Multilayers Radiation Radiation error Root-mean-square errors Sensors Solar radiation Studies Temperature Temperature sensor Temperature sensors |
title | Design and experimental research of a temperature sensor applied to surface air temperature monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20experimental%20research%20of%20a%20temperature%20sensor%20applied%20to%20surface%20air%20temperature%20monitoring&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Yang,%20Jie&rft.date=2021-09&rft.volume=182&rft.spage=109719&rft.pages=109719-&rft.artnum=109719&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109719&rft_dat=%3Cproquest_cross%3E2569692037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569692037&rft_id=info:pmid/&rft_els_id=S0263224121006813&rfr_iscdi=true |