A machine vision method for measurement of machining tool wear

•A machine vision method is proposed for measurement of tool wears.•A local variance threshold segmentation is proposed to extract full contour of the tool.•BLMD-based adaptive enhanced contrast algorithm is proposed.•A threshold segmentation method is proposed to extract contour of the non-worn are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2021-09, Vol.182, p.109683, Article 109683
Hauptverfasser: Yu, Jianbo, Cheng, Xun, Lu, Liang, Wu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109683
container_title Measurement : journal of the International Measurement Confederation
container_volume 182
creator Yu, Jianbo
Cheng, Xun
Lu, Liang
Wu, Bin
description •A machine vision method is proposed for measurement of tool wears.•A local variance threshold segmentation is proposed to extract full contour of the tool.•BLMD-based adaptive enhanced contrast algorithm is proposed.•A threshold segmentation method is proposed to extract contour of the non-worn area. Tool wears directly affect the quality of product and service life of tool. This paper proposes a machine vision-based measurement method for chisel edge wear of drills. Firstly, the full contour of a drill is extracted by local variance threshold segmentation. Secondly, the image is enhanced by using an adaptive contrast enhancement algorithm based on bidimensional local mean decomposition (BLMD). A threshold segmentation method is proposed to extract contour of the non-worn area. After the above two contours are superimposed, the centroid of each region in the binary image is calculated as the starting point to fill in the overflow water for tool wear extraction. Finally, the chisel edge wear can be measured directly by counting the number of pixels. The experiment in the process of drilling is performed to verify the effectiveness of the proposed method. The experimental results show that the proposed method effectively implements the measurement of tool wear.
doi_str_mv 10.1016/j.measurement.2021.109683
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569690713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121006497</els_id><sourcerecordid>2569690713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-cb660a5f6e67b6aa41a71905e8f4224138037b2b4d9eae0bd93c012078bb86a93</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h4jnrpOkTZuLsCz-gwUvCt5Cmk7dlG2zJu2K394u3cMePQ0Mv_dm3iPklsGCAZP3zaJFE4eALXb9ggNn417JQpyRGStykaSMf56TGXApEs5TdkmuYmwAQAolZ-RhSVtjN65DunfR-Y622G98RWsf6Ik19fURdN0X7b3f0h804Zpc1GYb8eY45-Tj6fF99ZKs355fV8t1YkWa9YktpQST1RJlXkpjUmZypiDDok4PT4kCRF7yMq0UGoSyUsIC45AXZVlIo8Sc3E2-u-C_B4y9bvwQuvGk5plUUkHOxEipibLBxxiw1rvgWhN-NQN9qEs3-iSTPtSlp7pG7WrS4hhj7zDoaB12FisX0Pa68u4fLn9fSHjy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569690713</pqid></control><display><type>article</type><title>A machine vision method for measurement of machining tool wear</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Jianbo ; Cheng, Xun ; Lu, Liang ; Wu, Bin</creator><creatorcontrib>Yu, Jianbo ; Cheng, Xun ; Lu, Liang ; Wu, Bin</creatorcontrib><description>•A machine vision method is proposed for measurement of tool wears.•A local variance threshold segmentation is proposed to extract full contour of the tool.•BLMD-based adaptive enhanced contrast algorithm is proposed.•A threshold segmentation method is proposed to extract contour of the non-worn area. Tool wears directly affect the quality of product and service life of tool. This paper proposes a machine vision-based measurement method for chisel edge wear of drills. Firstly, the full contour of a drill is extracted by local variance threshold segmentation. Secondly, the image is enhanced by using an adaptive contrast enhancement algorithm based on bidimensional local mean decomposition (BLMD). A threshold segmentation method is proposed to extract contour of the non-worn area. After the above two contours are superimposed, the centroid of each region in the binary image is calculated as the starting point to fill in the overflow water for tool wear extraction. Finally, the chisel edge wear can be measured directly by counting the number of pixels. The experiment in the process of drilling is performed to verify the effectiveness of the proposed method. The experimental results show that the proposed method effectively implements the measurement of tool wear.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109683</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Adaptive algorithms ; Bidimensional local mean decomposition ; Centroids ; Contours ; Drilling ; Edge extraction ; Hand tools ; Image contrast ; Image enhancement ; Image segmentation ; Machine vision ; Machining ; Measurement ; Measurement methods ; Service life ; Studies ; Tool life ; Tool wear ; Tool wear measurement ; Vision systems ; Wear ; Wear resistance</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109683, Article 109683</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-cb660a5f6e67b6aa41a71905e8f4224138037b2b4d9eae0bd93c012078bb86a93</citedby><cites>FETCH-LOGICAL-c345t-cb660a5f6e67b6aa41a71905e8f4224138037b2b4d9eae0bd93c012078bb86a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224121006497$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Yu, Jianbo</creatorcontrib><creatorcontrib>Cheng, Xun</creatorcontrib><creatorcontrib>Lu, Liang</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><title>A machine vision method for measurement of machining tool wear</title><title>Measurement : journal of the International Measurement Confederation</title><description>•A machine vision method is proposed for measurement of tool wears.•A local variance threshold segmentation is proposed to extract full contour of the tool.•BLMD-based adaptive enhanced contrast algorithm is proposed.•A threshold segmentation method is proposed to extract contour of the non-worn area. Tool wears directly affect the quality of product and service life of tool. This paper proposes a machine vision-based measurement method for chisel edge wear of drills. Firstly, the full contour of a drill is extracted by local variance threshold segmentation. Secondly, the image is enhanced by using an adaptive contrast enhancement algorithm based on bidimensional local mean decomposition (BLMD). A threshold segmentation method is proposed to extract contour of the non-worn area. After the above two contours are superimposed, the centroid of each region in the binary image is calculated as the starting point to fill in the overflow water for tool wear extraction. Finally, the chisel edge wear can be measured directly by counting the number of pixels. The experiment in the process of drilling is performed to verify the effectiveness of the proposed method. The experimental results show that the proposed method effectively implements the measurement of tool wear.</description><subject>Adaptive algorithms</subject><subject>Bidimensional local mean decomposition</subject><subject>Centroids</subject><subject>Contours</subject><subject>Drilling</subject><subject>Edge extraction</subject><subject>Hand tools</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Machine vision</subject><subject>Machining</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Service life</subject><subject>Studies</subject><subject>Tool life</subject><subject>Tool wear</subject><subject>Tool wear measurement</subject><subject>Vision systems</subject><subject>Wear</subject><subject>Wear resistance</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h4jnrpOkTZuLsCz-gwUvCt5Cmk7dlG2zJu2K394u3cMePQ0Mv_dm3iPklsGCAZP3zaJFE4eALXb9ggNn417JQpyRGStykaSMf56TGXApEs5TdkmuYmwAQAolZ-RhSVtjN65DunfR-Y622G98RWsf6Ik19fURdN0X7b3f0h804Zpc1GYb8eY45-Tj6fF99ZKs355fV8t1YkWa9YktpQST1RJlXkpjUmZypiDDok4PT4kCRF7yMq0UGoSyUsIC45AXZVlIo8Sc3E2-u-C_B4y9bvwQuvGk5plUUkHOxEipibLBxxiw1rvgWhN-NQN9qEs3-iSTPtSlp7pG7WrS4hhj7zDoaB12FisX0Pa68u4fLn9fSHjy</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Yu, Jianbo</creator><creator>Cheng, Xun</creator><creator>Lu, Liang</creator><creator>Wu, Bin</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>A machine vision method for measurement of machining tool wear</title><author>Yu, Jianbo ; Cheng, Xun ; Lu, Liang ; Wu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-cb660a5f6e67b6aa41a71905e8f4224138037b2b4d9eae0bd93c012078bb86a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Bidimensional local mean decomposition</topic><topic>Centroids</topic><topic>Contours</topic><topic>Drilling</topic><topic>Edge extraction</topic><topic>Hand tools</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Machine vision</topic><topic>Machining</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Service life</topic><topic>Studies</topic><topic>Tool life</topic><topic>Tool wear</topic><topic>Tool wear measurement</topic><topic>Vision systems</topic><topic>Wear</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jianbo</creatorcontrib><creatorcontrib>Cheng, Xun</creatorcontrib><creatorcontrib>Lu, Liang</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jianbo</au><au>Cheng, Xun</au><au>Lu, Liang</au><au>Wu, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine vision method for measurement of machining tool wear</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-09</date><risdate>2021</risdate><volume>182</volume><spage>109683</spage><pages>109683-</pages><artnum>109683</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•A machine vision method is proposed for measurement of tool wears.•A local variance threshold segmentation is proposed to extract full contour of the tool.•BLMD-based adaptive enhanced contrast algorithm is proposed.•A threshold segmentation method is proposed to extract contour of the non-worn area. Tool wears directly affect the quality of product and service life of tool. This paper proposes a machine vision-based measurement method for chisel edge wear of drills. Firstly, the full contour of a drill is extracted by local variance threshold segmentation. Secondly, the image is enhanced by using an adaptive contrast enhancement algorithm based on bidimensional local mean decomposition (BLMD). A threshold segmentation method is proposed to extract contour of the non-worn area. After the above two contours are superimposed, the centroid of each region in the binary image is calculated as the starting point to fill in the overflow water for tool wear extraction. Finally, the chisel edge wear can be measured directly by counting the number of pixels. The experiment in the process of drilling is performed to verify the effectiveness of the proposed method. The experimental results show that the proposed method effectively implements the measurement of tool wear.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109683</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-09, Vol.182, p.109683, Article 109683
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2569690713
source Elsevier ScienceDirect Journals
subjects Adaptive algorithms
Bidimensional local mean decomposition
Centroids
Contours
Drilling
Edge extraction
Hand tools
Image contrast
Image enhancement
Image segmentation
Machine vision
Machining
Measurement
Measurement methods
Service life
Studies
Tool life
Tool wear
Tool wear measurement
Vision systems
Wear
Wear resistance
title A machine vision method for measurement of machining tool wear
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20vision%20method%20for%20measurement%20of%20machining%20tool%20wear&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Yu,%20Jianbo&rft.date=2021-09&rft.volume=182&rft.spage=109683&rft.pages=109683-&rft.artnum=109683&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109683&rft_dat=%3Cproquest_cross%3E2569690713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569690713&rft_id=info:pmid/&rft_els_id=S0263224121006497&rfr_iscdi=true