Machine Learning of Interstellar Chemical Inventories

The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as the number of viable species grows combinatorially, even when consideri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-08, Vol.917 (1), p.L6
Hauptverfasser: Lee, Kin Long Kelvin, Patterson, Jacqueline, Burkhardt, Andrew M., Vankayalapati, Vivek, McCarthy, Michael C., McGuire, Brett A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L6
container_title Astrophysical journal. Letters
container_volume 917
creator Lee, Kin Long Kelvin
Patterson, Jacqueline
Burkhardt, Andrew M.
Vankayalapati, Vivek
McCarthy, Michael C.
McGuire, Brett A.
description The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as the number of viable species grows combinatorially, even when considering only the most thermodynamically stable. In this work, we present a novel approach for understanding and modeling interstellar chemical inventories by combining methodologies from cheminformatics and machine learning. Using multidimensional vector representations of molecules obtained through unsupervised machine learning, we show that identification of candidates for astrochemical study can be achieved through quantitative measures of chemical similarity in this vector space, highlighting molecules that are most similar to those already known in the interstellar medium. Furthermore, we show that simple, supervised learning regressors are capable of reproducing the abundances of entire chemical inventories, and predict the abundance of not-yet-seen molecules. As a proof-of-concept, we have developed and applied this discovery pipeline to the chemical inventory of a well-known dark molecular cloud, the Taurus Molecular Cloud 1, one of the most chemically rich regions of space known to date. In this paper, we discuss the implications and new insights machine learning explorations of chemical space can provide in astrochemistry.
doi_str_mv 10.3847/2041-8213/ac194b
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2569683073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569683073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b615f19833508ce8e0e412e4c8e43c84ef2047f73b679c60aa250207b0e06b7d3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgunr3WBBv1n1p0iQ9SvFjoeJFzyHNvrgt3bYmXcF_b0tlvYin9xhm5s0bQi4p3DLF5SoBTmOVULYylma8PCKLA3R82CE9JWch1AAJCKoWJH02dlu1GBVofFu171HnonU7oA8DNo3xUb7FXWVNM6Kf2A6drzCckxNnmoAXP3NJ3h7uX_OnuHh5XOd3RWyZgiEuBU0dzRRjKSiLCgE5TZBbhZxZxdGNsaSTrBQyswKMSdIxmCwBQZRyw5bkavbtffexxzDoutv7djypk1RkQjGQbGTBzLK-C8Gj072vdsZ_aQp6KkdP3-upCT2XM0puZknV9b-e_9Cv_6Cbvm50RqWmuhC63zj2DZ_JcKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569683073</pqid></control><display><type>article</type><title>Machine Learning of Interstellar Chemical Inventories</title><source>IOP Publishing (Open access)</source><creator>Lee, Kin Long Kelvin ; Patterson, Jacqueline ; Burkhardt, Andrew M. ; Vankayalapati, Vivek ; McCarthy, Michael C. ; McGuire, Brett A.</creator><creatorcontrib>Lee, Kin Long Kelvin ; Patterson, Jacqueline ; Burkhardt, Andrew M. ; Vankayalapati, Vivek ; McCarthy, Michael C. ; McGuire, Brett A.</creatorcontrib><description>The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as the number of viable species grows combinatorially, even when considering only the most thermodynamically stable. In this work, we present a novel approach for understanding and modeling interstellar chemical inventories by combining methodologies from cheminformatics and machine learning. Using multidimensional vector representations of molecules obtained through unsupervised machine learning, we show that identification of candidates for astrochemical study can be achieved through quantitative measures of chemical similarity in this vector space, highlighting molecules that are most similar to those already known in the interstellar medium. Furthermore, we show that simple, supervised learning regressors are capable of reproducing the abundances of entire chemical inventories, and predict the abundance of not-yet-seen molecules. As a proof-of-concept, we have developed and applied this discovery pipeline to the chemical inventory of a well-known dark molecular cloud, the Taurus Molecular Cloud 1, one of the most chemically rich regions of space known to date. In this paper, we discuss the implications and new insights machine learning explorations of chemical space can provide in astrochemistry.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ac194b</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Abundance ; Astrochemistry ; Chemical abundances ; Chemical fingerprinting ; Interdisciplinary astronomy ; Interstellar chemistry ; Interstellar matter ; Interstellar medium ; Machine learning ; Molecular clouds</subject><ispartof>Astrophysical journal. Letters, 2021-08, Vol.917 (1), p.L6</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Aug 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b615f19833508ce8e0e412e4c8e43c84ef2047f73b679c60aa250207b0e06b7d3</citedby><cites>FETCH-LOGICAL-c380t-b615f19833508ce8e0e412e4c8e43c84ef2047f73b679c60aa250207b0e06b7d3</cites><orcidid>0000-0003-0799-0927 ; 0000-0003-1254-4817 ; 0000-0001-9142-0008 ; 0000-0002-1903-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac194b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac194b$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lee, Kin Long Kelvin</creatorcontrib><creatorcontrib>Patterson, Jacqueline</creatorcontrib><creatorcontrib>Burkhardt, Andrew M.</creatorcontrib><creatorcontrib>Vankayalapati, Vivek</creatorcontrib><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>McGuire, Brett A.</creatorcontrib><title>Machine Learning of Interstellar Chemical Inventories</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as the number of viable species grows combinatorially, even when considering only the most thermodynamically stable. In this work, we present a novel approach for understanding and modeling interstellar chemical inventories by combining methodologies from cheminformatics and machine learning. Using multidimensional vector representations of molecules obtained through unsupervised machine learning, we show that identification of candidates for astrochemical study can be achieved through quantitative measures of chemical similarity in this vector space, highlighting molecules that are most similar to those already known in the interstellar medium. Furthermore, we show that simple, supervised learning regressors are capable of reproducing the abundances of entire chemical inventories, and predict the abundance of not-yet-seen molecules. As a proof-of-concept, we have developed and applied this discovery pipeline to the chemical inventory of a well-known dark molecular cloud, the Taurus Molecular Cloud 1, one of the most chemically rich regions of space known to date. In this paper, we discuss the implications and new insights machine learning explorations of chemical space can provide in astrochemistry.</description><subject>Abundance</subject><subject>Astrochemistry</subject><subject>Chemical abundances</subject><subject>Chemical fingerprinting</subject><subject>Interdisciplinary astronomy</subject><subject>Interstellar chemistry</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Machine learning</subject><subject>Molecular clouds</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLgunr3WBBv1n1p0iQ9SvFjoeJFzyHNvrgt3bYmXcF_b0tlvYin9xhm5s0bQi4p3DLF5SoBTmOVULYylma8PCKLA3R82CE9JWch1AAJCKoWJH02dlu1GBVofFu171HnonU7oA8DNo3xUb7FXWVNM6Kf2A6drzCckxNnmoAXP3NJ3h7uX_OnuHh5XOd3RWyZgiEuBU0dzRRjKSiLCgE5TZBbhZxZxdGNsaSTrBQyswKMSdIxmCwBQZRyw5bkavbtffexxzDoutv7djypk1RkQjGQbGTBzLK-C8Gj072vdsZ_aQp6KkdP3-upCT2XM0puZknV9b-e_9Cv_6Cbvm50RqWmuhC63zj2DZ_JcKk</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lee, Kin Long Kelvin</creator><creator>Patterson, Jacqueline</creator><creator>Burkhardt, Andrew M.</creator><creator>Vankayalapati, Vivek</creator><creator>McCarthy, Michael C.</creator><creator>McGuire, Brett A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0799-0927</orcidid><orcidid>https://orcid.org/0000-0003-1254-4817</orcidid><orcidid>https://orcid.org/0000-0001-9142-0008</orcidid><orcidid>https://orcid.org/0000-0002-1903-9242</orcidid></search><sort><creationdate>20210801</creationdate><title>Machine Learning of Interstellar Chemical Inventories</title><author>Lee, Kin Long Kelvin ; Patterson, Jacqueline ; Burkhardt, Andrew M. ; Vankayalapati, Vivek ; McCarthy, Michael C. ; McGuire, Brett A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b615f19833508ce8e0e412e4c8e43c84ef2047f73b679c60aa250207b0e06b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Astrochemistry</topic><topic>Chemical abundances</topic><topic>Chemical fingerprinting</topic><topic>Interdisciplinary astronomy</topic><topic>Interstellar chemistry</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Machine learning</topic><topic>Molecular clouds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kin Long Kelvin</creatorcontrib><creatorcontrib>Patterson, Jacqueline</creatorcontrib><creatorcontrib>Burkhardt, Andrew M.</creatorcontrib><creatorcontrib>Vankayalapati, Vivek</creatorcontrib><creatorcontrib>McCarthy, Michael C.</creatorcontrib><creatorcontrib>McGuire, Brett A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Kin Long Kelvin</au><au>Patterson, Jacqueline</au><au>Burkhardt, Andrew M.</au><au>Vankayalapati, Vivek</au><au>McCarthy, Michael C.</au><au>McGuire, Brett A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning of Interstellar Chemical Inventories</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>917</volume><issue>1</issue><spage>L6</spage><pages>L6-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as the number of viable species grows combinatorially, even when considering only the most thermodynamically stable. In this work, we present a novel approach for understanding and modeling interstellar chemical inventories by combining methodologies from cheminformatics and machine learning. Using multidimensional vector representations of molecules obtained through unsupervised machine learning, we show that identification of candidates for astrochemical study can be achieved through quantitative measures of chemical similarity in this vector space, highlighting molecules that are most similar to those already known in the interstellar medium. Furthermore, we show that simple, supervised learning regressors are capable of reproducing the abundances of entire chemical inventories, and predict the abundance of not-yet-seen molecules. As a proof-of-concept, we have developed and applied this discovery pipeline to the chemical inventory of a well-known dark molecular cloud, the Taurus Molecular Cloud 1, one of the most chemically rich regions of space known to date. In this paper, we discuss the implications and new insights machine learning explorations of chemical space can provide in astrochemistry.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ac194b</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0799-0927</orcidid><orcidid>https://orcid.org/0000-0003-1254-4817</orcidid><orcidid>https://orcid.org/0000-0001-9142-0008</orcidid><orcidid>https://orcid.org/0000-0002-1903-9242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2021-08, Vol.917 (1), p.L6
issn 2041-8205
2041-8213
language eng
recordid cdi_proquest_journals_2569683073
source IOP Publishing (Open access)
subjects Abundance
Astrochemistry
Chemical abundances
Chemical fingerprinting
Interdisciplinary astronomy
Interstellar chemistry
Interstellar matter
Interstellar medium
Machine learning
Molecular clouds
title Machine Learning of Interstellar Chemical Inventories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20of%20Interstellar%20Chemical%20Inventories&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Lee,%20Kin%20Long%20Kelvin&rft.date=2021-08-01&rft.volume=917&rft.issue=1&rft.spage=L6&rft.pages=L6-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ac194b&rft_dat=%3Cproquest_O3W%3E2569683073%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569683073&rft_id=info:pmid/&rfr_iscdi=true