Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy

GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2021-09, Vol.60 (9), p.95501
Hauptverfasser: Takino, Junichi, Sumi, Tomoaki, Okayama, Yoshio, Kitamoto, Akira, Usami, Shigeyoshi, Imanishi, Masayuki, Yoshimura, Masashi, Mori, Yusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 95501
container_title Japanese Journal of Applied Physics
container_volume 60
creator Takino, Junichi
Sumi, Tomoaki
Okayama, Yoshio
Kitamoto, Akira
Usami, Shigeyoshi
Imanishi, Masayuki
Yoshimura, Masashi
Mori, Yusuke
description GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inverted pyramidal pits, called three-dimensional (3D) growth mode. This mode reduced TDD from 3.8 × 10 6  cm −2 to 2.0 × 10 4  cm −2 for 1 mm thick growth because the threading dislocations (TDs) converged to the center of each pit. Moreover, when the crystal surface after polishing was observed by photoluminescence measurement, peculiar floral designs reflecting the distribution of oxygen concentration were observed over the entire surface. In addition, the etch pits exhibited TDs in the center of each floral design. On the basis of our results, we proposed that the 3D-OVPE-GaN will serve as a key material for improving the performance of vertical GaN devices.
doi_str_mv 10.35848/1347-4065/ac1d2f
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2569681024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569681024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2cc7936144eeae2f58d5139d869d152c40118ec870ce37561f7b3e089cc05b13</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hZ4sLF1M88uKGKFqQKLr1bru20jkIc7PSRf0_aILggTqudnZmVPgBuCX5gIuPZhDCeIo4TMVGaGFqcgdGPdA5GGFOCeE7pJbiKsezXRHAyAm5W-aAqaGx06xrO1RvUoYutquIjrPwehf4QW7ezUNXmpBgXK69V63yNjK2jazu4Dn7fbuCqg_7gjIU71fgAm42KFtrGterQXYOLom-1N99zDJaz5-X0BS3e56_TpwXSXLAWUa3TnCWEc2uVpYXIjCAsN1mSGyKo5piQzOosxdqyVCSkSFfM4izXGosVYWNwN9Q2wX9ubWxl6beh7j9KKpI8yQimvHeRwaWDjzHYQjbBfajQSYLlCag80pNHenIA2mfQkHG--S39z3__h78sVSMTLHOJcyEwkY0p2BfvJ4Yh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569681024</pqid></control><display><type>article</type><title>Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Takino, Junichi ; Sumi, Tomoaki ; Okayama, Yoshio ; Kitamoto, Akira ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creator><creatorcontrib>Takino, Junichi ; Sumi, Tomoaki ; Okayama, Yoshio ; Kitamoto, Akira ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</creatorcontrib><description>GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inverted pyramidal pits, called three-dimensional (3D) growth mode. This mode reduced TDD from 3.8 × 10 6  cm −2 to 2.0 × 10 4  cm −2 for 1 mm thick growth because the threading dislocations (TDs) converged to the center of each pit. Moreover, when the crystal surface after polishing was observed by photoluminescence measurement, peculiar floral designs reflecting the distribution of oxygen concentration were observed over the entire surface. In addition, the etch pits exhibited TDs in the center of each floral design. On the basis of our results, we proposed that the 3D-OVPE-GaN will serve as a key material for improving the performance of vertical GaN devices.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.35848/1347-4065/ac1d2f</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Crystal dislocations ; Crystal growth ; Crystal surfaces ; Crystals ; Dislocation density ; Epitaxial growth ; Etch pits ; GaN ; growth mode control ; low dislocation density ; low resistance ; Photoluminescence ; power device ; Threading dislocations ; Vapor phase epitaxy ; Vapor phases ; vertical device</subject><ispartof>Japanese Journal of Applied Physics, 2021-09, Vol.60 (9), p.95501</ispartof><rights>2021 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd</rights><rights>Copyright Japanese Journal of Applied Physics Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2cc7936144eeae2f58d5139d869d152c40118ec870ce37561f7b3e089cc05b13</citedby><cites>FETCH-LOGICAL-c453t-2cc7936144eeae2f58d5139d869d152c40118ec870ce37561f7b3e089cc05b13</cites><orcidid>0000-0001-7536-4683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.35848/1347-4065/ac1d2f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Kitamoto, Akira</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><title>Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inverted pyramidal pits, called three-dimensional (3D) growth mode. This mode reduced TDD from 3.8 × 10 6  cm −2 to 2.0 × 10 4  cm −2 for 1 mm thick growth because the threading dislocations (TDs) converged to the center of each pit. Moreover, when the crystal surface after polishing was observed by photoluminescence measurement, peculiar floral designs reflecting the distribution of oxygen concentration were observed over the entire surface. In addition, the etch pits exhibited TDs in the center of each floral design. On the basis of our results, we proposed that the 3D-OVPE-GaN will serve as a key material for improving the performance of vertical GaN devices.</description><subject>Crystal dislocations</subject><subject>Crystal growth</subject><subject>Crystal surfaces</subject><subject>Crystals</subject><subject>Dislocation density</subject><subject>Epitaxial growth</subject><subject>Etch pits</subject><subject>GaN</subject><subject>growth mode control</subject><subject>low dislocation density</subject><subject>low resistance</subject><subject>Photoluminescence</subject><subject>power device</subject><subject>Threading dislocations</subject><subject>Vapor phase epitaxy</subject><subject>Vapor phases</subject><subject>vertical device</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwA7hZ4sLF1M88uKGKFqQKLr1bru20jkIc7PSRf0_aILggTqudnZmVPgBuCX5gIuPZhDCeIo4TMVGaGFqcgdGPdA5GGFOCeE7pJbiKsezXRHAyAm5W-aAqaGx06xrO1RvUoYutquIjrPwehf4QW7ezUNXmpBgXK69V63yNjK2jazu4Dn7fbuCqg_7gjIU71fgAm42KFtrGterQXYOLom-1N99zDJaz5-X0BS3e56_TpwXSXLAWUa3TnCWEc2uVpYXIjCAsN1mSGyKo5piQzOosxdqyVCSkSFfM4izXGosVYWNwN9Q2wX9ubWxl6beh7j9KKpI8yQimvHeRwaWDjzHYQjbBfajQSYLlCag80pNHenIA2mfQkHG--S39z3__h78sVSMTLHOJcyEwkY0p2BfvJ4Yh</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Takino, Junichi</creator><creator>Sumi, Tomoaki</creator><creator>Okayama, Yoshio</creator><creator>Kitamoto, Akira</creator><creator>Usami, Shigeyoshi</creator><creator>Imanishi, Masayuki</creator><creator>Yoshimura, Masashi</creator><creator>Mori, Yusuke</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7536-4683</orcidid></search><sort><creationdate>20210901</creationdate><title>Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy</title><author>Takino, Junichi ; Sumi, Tomoaki ; Okayama, Yoshio ; Kitamoto, Akira ; Usami, Shigeyoshi ; Imanishi, Masayuki ; Yoshimura, Masashi ; Mori, Yusuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2cc7936144eeae2f58d5139d869d152c40118ec870ce37561f7b3e089cc05b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal dislocations</topic><topic>Crystal growth</topic><topic>Crystal surfaces</topic><topic>Crystals</topic><topic>Dislocation density</topic><topic>Epitaxial growth</topic><topic>Etch pits</topic><topic>GaN</topic><topic>growth mode control</topic><topic>low dislocation density</topic><topic>low resistance</topic><topic>Photoluminescence</topic><topic>power device</topic><topic>Threading dislocations</topic><topic>Vapor phase epitaxy</topic><topic>Vapor phases</topic><topic>vertical device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takino, Junichi</creatorcontrib><creatorcontrib>Sumi, Tomoaki</creatorcontrib><creatorcontrib>Okayama, Yoshio</creatorcontrib><creatorcontrib>Kitamoto, Akira</creatorcontrib><creatorcontrib>Usami, Shigeyoshi</creatorcontrib><creatorcontrib>Imanishi, Masayuki</creatorcontrib><creatorcontrib>Yoshimura, Masashi</creatorcontrib><creatorcontrib>Mori, Yusuke</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takino, Junichi</au><au>Sumi, Tomoaki</au><au>Okayama, Yoshio</au><au>Kitamoto, Akira</au><au>Usami, Shigeyoshi</au><au>Imanishi, Masayuki</au><au>Yoshimura, Masashi</au><au>Mori, Yusuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>60</volume><issue>9</issue><spage>95501</spage><pages>95501-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>GaN crystal growth mode in the oxide vapor phase epitaxy (OVPE) method, which simultaneously provides low electrical resistance and low threading dislocation density (TDD), has been investigated in detail. The results clarified that these qualities can be achieved by the expression of numerous inverted pyramidal pits, called three-dimensional (3D) growth mode. This mode reduced TDD from 3.8 × 10 6  cm −2 to 2.0 × 10 4  cm −2 for 1 mm thick growth because the threading dislocations (TDs) converged to the center of each pit. Moreover, when the crystal surface after polishing was observed by photoluminescence measurement, peculiar floral designs reflecting the distribution of oxygen concentration were observed over the entire surface. In addition, the etch pits exhibited TDs in the center of each floral design. On the basis of our results, we proposed that the 3D-OVPE-GaN will serve as a key material for improving the performance of vertical GaN devices.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.35848/1347-4065/ac1d2f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7536-4683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2021-09, Vol.60 (9), p.95501
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2569681024
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Crystal dislocations
Crystal growth
Crystal surfaces
Crystals
Dislocation density
Epitaxial growth
Etch pits
GaN
growth mode control
low dislocation density
low resistance
Photoluminescence
power device
Threading dislocations
Vapor phase epitaxy
Vapor phases
vertical device
title Floral design GaN crystals: low-resistive and low-dislocation-density growth by oxide vapor phase epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floral%20design%20GaN%20crystals:%20low-resistive%20and%20low-dislocation-density%20growth%20by%20oxide%20vapor%20phase%20epitaxy&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Takino,%20Junichi&rft.date=2021-09-01&rft.volume=60&rft.issue=9&rft.spage=95501&rft.pages=95501-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.35848/1347-4065/ac1d2f&rft_dat=%3Cproquest_iop_j%3E2569681024%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569681024&rft_id=info:pmid/&rfr_iscdi=true