A mean field absorbing control model for interacting objects systems
We study a class of discrete-time stochastic systems composed of a large number of N interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is obser...
Gespeichert in:
Veröffentlicht in: | Discrete event dynamic systems 2021, Vol.31 (3), p.349-372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 3 |
container_start_page | 349 |
container_title | Discrete event dynamic systems |
container_volume | 31 |
creator | Elena, Martínez-Manzanares M Adolfo, Minjárez-Sosa J |
description | We study a class of discrete-time stochastic systems composed of a large number of
N
interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is observed, the controller takes a decision; then a cost is incurred and there is a positive probability the process stops, otherwise the objects move randomly among the classes according to a transition probability. That is, with positive probability, the system is absorbed by a configuration that represents the death of the system, and there it will remain without incurring cost. Due to the large number of objects, the control problem is studied according to the mean field theory. Thus, instead of analyzing a single object, we focus on the proportions of objects occupying each class, and then we study the limit as
N
goes to infinity. |
doi_str_mv | 10.1007/s10626-021-00339-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569666847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569666847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-772e3072d9bbd5a8536f7e1d255af8077aca6f87850e5ab727958a68b2bdf6c23</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKDAsm_qZNHGjawIz0EwzM1Sgi_bXO3VM3Ll6i3vufclB6JbCPQVQD5mCZJIAowSAc02OZ2hGheJECb04RzPQbEGkAn6JrnLewkhpEDP0uMS9twMOre8abF2OybXDBtdxKCl2uI-N73CICbdD8cnW5ZRGt_V1yTgfcvF9vkYXwXbZ3_zeOfp8fvpYvZL1-8vbarkmNae6EKWY56BYo51rhK0El0F52jAhbKhAKVtbGSpVCfDCOsWUFpWVlWOuCbJmfI7upt1dil97n4vZxn0axpeGCamllNVCjRSbqDrFnJMPZpfa3qaDoWBOtsxky4y2zI8tcxxLfCrlER42Pv1N_9P6Blv1bXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569666847</pqid></control><display><type>article</type><title>A mean field absorbing control model for interacting objects systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Elena, Martínez-Manzanares M ; Adolfo, Minjárez-Sosa J</creator><creatorcontrib>Elena, Martínez-Manzanares M ; Adolfo, Minjárez-Sosa J</creatorcontrib><description>We study a class of discrete-time stochastic systems composed of a large number of
N
interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is observed, the controller takes a decision; then a cost is incurred and there is a positive probability the process stops, otherwise the objects move randomly among the classes according to a transition probability. That is, with positive probability, the system is absorbed by a configuration that represents the death of the system, and there it will remain without incurring cost. Due to the large number of objects, the control problem is studied according to the mean field theory. Thus, instead of analyzing a single object, we focus on the proportions of objects occupying each class, and then we study the limit as
N
goes to infinity.</description><identifier>ISSN: 0924-6703</identifier><identifier>EISSN: 1573-7594</identifier><identifier>DOI: 10.1007/s10626-021-00339-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Configurations ; Control ; Convex and Discrete Geometry ; Decision making ; Discrete time systems ; Electrical Engineering ; Machines ; Manufacturing ; Mathematics ; Mathematics and Statistics ; Mean field theory ; Operations Research/Decision Theory ; Processes ; Stochastic systems ; Systems Theory ; Transition probabilities</subject><ispartof>Discrete event dynamic systems, 2021, Vol.31 (3), p.349-372</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-772e3072d9bbd5a8536f7e1d255af8077aca6f87850e5ab727958a68b2bdf6c23</citedby><cites>FETCH-LOGICAL-c319t-772e3072d9bbd5a8536f7e1d255af8077aca6f87850e5ab727958a68b2bdf6c23</cites><orcidid>0000-0002-3453-4508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10626-021-00339-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10626-021-00339-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Elena, Martínez-Manzanares M</creatorcontrib><creatorcontrib>Adolfo, Minjárez-Sosa J</creatorcontrib><title>A mean field absorbing control model for interacting objects systems</title><title>Discrete event dynamic systems</title><addtitle>Discrete Event Dyn Syst</addtitle><description>We study a class of discrete-time stochastic systems composed of a large number of
N
interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is observed, the controller takes a decision; then a cost is incurred and there is a positive probability the process stops, otherwise the objects move randomly among the classes according to a transition probability. That is, with positive probability, the system is absorbed by a configuration that represents the death of the system, and there it will remain without incurring cost. Due to the large number of objects, the control problem is studied according to the mean field theory. Thus, instead of analyzing a single object, we focus on the proportions of objects occupying each class, and then we study the limit as
N
goes to infinity.</description><subject>Configurations</subject><subject>Control</subject><subject>Convex and Discrete Geometry</subject><subject>Decision making</subject><subject>Discrete time systems</subject><subject>Electrical Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mean field theory</subject><subject>Operations Research/Decision Theory</subject><subject>Processes</subject><subject>Stochastic systems</subject><subject>Systems Theory</subject><subject>Transition probabilities</subject><issn>0924-6703</issn><issn>1573-7594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKDAsm_qZNHGjawIz0EwzM1Sgi_bXO3VM3Ll6i3vufclB6JbCPQVQD5mCZJIAowSAc02OZ2hGheJECb04RzPQbEGkAn6JrnLewkhpEDP0uMS9twMOre8abF2OybXDBtdxKCl2uI-N73CICbdD8cnW5ZRGt_V1yTgfcvF9vkYXwXbZ3_zeOfp8fvpYvZL1-8vbarkmNae6EKWY56BYo51rhK0El0F52jAhbKhAKVtbGSpVCfDCOsWUFpWVlWOuCbJmfI7upt1dil97n4vZxn0axpeGCamllNVCjRSbqDrFnJMPZpfa3qaDoWBOtsxky4y2zI8tcxxLfCrlER42Pv1N_9P6Blv1bXw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Elena, Martínez-Manzanares M</creator><creator>Adolfo, Minjárez-Sosa J</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3453-4508</orcidid></search><sort><creationdate>2021</creationdate><title>A mean field absorbing control model for interacting objects systems</title><author>Elena, Martínez-Manzanares M ; Adolfo, Minjárez-Sosa J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-772e3072d9bbd5a8536f7e1d255af8077aca6f87850e5ab727958a68b2bdf6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Configurations</topic><topic>Control</topic><topic>Convex and Discrete Geometry</topic><topic>Decision making</topic><topic>Discrete time systems</topic><topic>Electrical Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mean field theory</topic><topic>Operations Research/Decision Theory</topic><topic>Processes</topic><topic>Stochastic systems</topic><topic>Systems Theory</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elena, Martínez-Manzanares M</creatorcontrib><creatorcontrib>Adolfo, Minjárez-Sosa J</creatorcontrib><collection>CrossRef</collection><jtitle>Discrete event dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elena, Martínez-Manzanares M</au><au>Adolfo, Minjárez-Sosa J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean field absorbing control model for interacting objects systems</atitle><jtitle>Discrete event dynamic systems</jtitle><stitle>Discrete Event Dyn Syst</stitle><date>2021</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>349</spage><epage>372</epage><pages>349-372</pages><issn>0924-6703</issn><eissn>1573-7594</eissn><abstract>We study a class of discrete-time stochastic systems composed of a large number of
N
interacting objects, which are classified in a finite number of classes. The behavior of the objects is controlled by a central decision-maker as follows. At each stage, once the configuration of the system is observed, the controller takes a decision; then a cost is incurred and there is a positive probability the process stops, otherwise the objects move randomly among the classes according to a transition probability. That is, with positive probability, the system is absorbed by a configuration that represents the death of the system, and there it will remain without incurring cost. Due to the large number of objects, the control problem is studied according to the mean field theory. Thus, instead of analyzing a single object, we focus on the proportions of objects occupying each class, and then we study the limit as
N
goes to infinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10626-021-00339-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3453-4508</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-6703 |
ispartof | Discrete event dynamic systems, 2021, Vol.31 (3), p.349-372 |
issn | 0924-6703 1573-7594 |
language | eng |
recordid | cdi_proquest_journals_2569666847 |
source | SpringerLink Journals - AutoHoldings |
subjects | Configurations Control Convex and Discrete Geometry Decision making Discrete time systems Electrical Engineering Machines Manufacturing Mathematics Mathematics and Statistics Mean field theory Operations Research/Decision Theory Processes Stochastic systems Systems Theory Transition probabilities |
title | A mean field absorbing control model for interacting objects systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean%20field%20absorbing%20control%20model%20for%20interacting%20objects%20systems&rft.jtitle=Discrete%20event%20dynamic%20systems&rft.au=Elena,%20Mart%C3%ADnez-Manzanares%20M&rft.date=2021&rft.volume=31&rft.issue=3&rft.spage=349&rft.epage=372&rft.pages=349-372&rft.issn=0924-6703&rft.eissn=1573-7594&rft_id=info:doi/10.1007/s10626-021-00339-z&rft_dat=%3Cproquest_cross%3E2569666847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569666847&rft_id=info:pmid/&rfr_iscdi=true |