Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance

Nanocrystalline Zn 2 SnO 4 /SnO 2 powder was obtained by a solid state reaction of ZnO and SnO 2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg poros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroceramics 2020-12, Vol.45 (4), p.135-147
Hauptverfasser: Nikolic, Maria Vesna, Labus, Nebojsa J., Pavlovic, Vera P., Markovic, Smilja, Lukovic, Miloljub D., Tadic, Nenad B., Vujancevic, Jelena D., Vlahovic, Branislav, Pavlovic, Vladimir B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 4
container_start_page 135
container_title Journal of electroceramics
container_volume 45
creator Nikolic, Maria Vesna
Labus, Nebojsa J.
Pavlovic, Vera P.
Markovic, Smilja
Lukovic, Miloljub D.
Tadic, Nenad B.
Vujancevic, Jelena D.
Vlahovic, Branislav
Pavlovic, Vladimir B.
description Nanocrystalline Zn 2 SnO 4 /SnO 2 powder was obtained by a solid state reaction of ZnO and SnO 2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30–90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 °C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 °C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.
doi_str_mv 10.1007/s10832-021-00232-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569663561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569663561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9e89fdae711c57dbf9aa36b106cba65d7717d7c09ecc4655838f3ad1441f5cb43</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz3WT5l_jTRZdhcU9qBc9hDRJtUub1qQFdz-90QrevMwMM--9gR8A5xhdYoTEImJUkDxDOc4QytO0PwAzzATJCs7JYZpJwTJCqTwGJzFuEUKyoHgGXh-070zYxUE3Te0dfPH5o9_QRSr5FVxOFxiHMJphDA5qb-H72Na2Hnaw9lUzOm8c7Dw0Xds37hPWbe-sTstTcFTpJrqz3z4Hz7c3T8u7bL1Z3S-v15khWA6ZdIWsrHYCY8OELSupNeElRtyUmjMrBBZWGCSdMZQzVpCiItpiSnHFTEnJHFxMuX3oPkYXB7XtxuDTS5UzLhMAxnFS5ZPKhC7G4CrVh7rVYacwUt8Q1QRRJYjqB6LaJxOZTDGJ_ZsLf9H_uL4AqUR2MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569663561</pqid></control><display><type>article</type><title>Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance</title><source>SpringerNature Journals</source><creator>Nikolic, Maria Vesna ; Labus, Nebojsa J. ; Pavlovic, Vera P. ; Markovic, Smilja ; Lukovic, Miloljub D. ; Tadic, Nenad B. ; Vujancevic, Jelena D. ; Vlahovic, Branislav ; Pavlovic, Vladimir B.</creator><creatorcontrib>Nikolic, Maria Vesna ; Labus, Nebojsa J. ; Pavlovic, Vera P. ; Markovic, Smilja ; Lukovic, Miloljub D. ; Tadic, Nenad B. ; Vujancevic, Jelena D. ; Vlahovic, Branislav ; Pavlovic, Vladimir B.</creatorcontrib><description>Nanocrystalline Zn 2 SnO 4 /SnO 2 powder was obtained by a solid state reaction of ZnO and SnO 2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30–90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 °C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 °C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.</description><identifier>ISSN: 1385-3449</identifier><identifier>EISSN: 1573-8663</identifier><identifier>DOI: 10.1007/s10832-021-00232-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Crystal structure ; Crystallography and Scattering Methods ; Electrochemistry ; Equivalent circuits ; Frequency ranges ; Glass ; Grain boundaries ; Hopping conduction ; Humidity ; Impedance ; Materials Science ; Morphology ; Nanocomposites ; Nanocrystals ; Natural Materials ; Optical and Electronic Materials ; Phase composition ; Raman spectroscopy ; Relative humidity ; Test chambers ; Tin dioxide ; Zinc oxide ; Zinc stannate</subject><ispartof>Journal of electroceramics, 2020-12, Vol.45 (4), p.135-147</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9e89fdae711c57dbf9aa36b106cba65d7717d7c09ecc4655838f3ad1441f5cb43</citedby><cites>FETCH-LOGICAL-c319t-9e89fdae711c57dbf9aa36b106cba65d7717d7c09ecc4655838f3ad1441f5cb43</cites><orcidid>0000-0001-5035-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10832-021-00232-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10832-021-00232-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nikolic, Maria Vesna</creatorcontrib><creatorcontrib>Labus, Nebojsa J.</creatorcontrib><creatorcontrib>Pavlovic, Vera P.</creatorcontrib><creatorcontrib>Markovic, Smilja</creatorcontrib><creatorcontrib>Lukovic, Miloljub D.</creatorcontrib><creatorcontrib>Tadic, Nenad B.</creatorcontrib><creatorcontrib>Vujancevic, Jelena D.</creatorcontrib><creatorcontrib>Vlahovic, Branislav</creatorcontrib><creatorcontrib>Pavlovic, Vladimir B.</creatorcontrib><title>Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance</title><title>Journal of electroceramics</title><addtitle>J Electroceram</addtitle><description>Nanocrystalline Zn 2 SnO 4 /SnO 2 powder was obtained by a solid state reaction of ZnO and SnO 2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30–90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 °C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 °C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Electrochemistry</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Glass</subject><subject>Grain boundaries</subject><subject>Hopping conduction</subject><subject>Humidity</subject><subject>Impedance</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Phase composition</subject><subject>Raman spectroscopy</subject><subject>Relative humidity</subject><subject>Test chambers</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><subject>Zinc stannate</subject><issn>1385-3449</issn><issn>1573-8663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz3WT5l_jTRZdhcU9qBc9hDRJtUub1qQFdz-90QrevMwMM--9gR8A5xhdYoTEImJUkDxDOc4QytO0PwAzzATJCs7JYZpJwTJCqTwGJzFuEUKyoHgGXh-070zYxUE3Te0dfPH5o9_QRSr5FVxOFxiHMJphDA5qb-H72Na2Hnaw9lUzOm8c7Dw0Xds37hPWbe-sTstTcFTpJrqz3z4Hz7c3T8u7bL1Z3S-v15khWA6ZdIWsrHYCY8OELSupNeElRtyUmjMrBBZWGCSdMZQzVpCiItpiSnHFTEnJHFxMuX3oPkYXB7XtxuDTS5UzLhMAxnFS5ZPKhC7G4CrVh7rVYacwUt8Q1QRRJYjqB6LaJxOZTDGJ_ZsLf9H_uL4AqUR2MQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Nikolic, Maria Vesna</creator><creator>Labus, Nebojsa J.</creator><creator>Pavlovic, Vera P.</creator><creator>Markovic, Smilja</creator><creator>Lukovic, Miloljub D.</creator><creator>Tadic, Nenad B.</creator><creator>Vujancevic, Jelena D.</creator><creator>Vlahovic, Branislav</creator><creator>Pavlovic, Vladimir B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5035-0170</orcidid></search><sort><creationdate>20201201</creationdate><title>Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance</title><author>Nikolic, Maria Vesna ; Labus, Nebojsa J. ; Pavlovic, Vera P. ; Markovic, Smilja ; Lukovic, Miloljub D. ; Tadic, Nenad B. ; Vujancevic, Jelena D. ; Vlahovic, Branislav ; Pavlovic, Vladimir B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9e89fdae711c57dbf9aa36b106cba65d7717d7c09ecc4655838f3ad1441f5cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Electrochemistry</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Glass</topic><topic>Grain boundaries</topic><topic>Hopping conduction</topic><topic>Humidity</topic><topic>Impedance</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Phase composition</topic><topic>Raman spectroscopy</topic><topic>Relative humidity</topic><topic>Test chambers</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><topic>Zinc stannate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolic, Maria Vesna</creatorcontrib><creatorcontrib>Labus, Nebojsa J.</creatorcontrib><creatorcontrib>Pavlovic, Vera P.</creatorcontrib><creatorcontrib>Markovic, Smilja</creatorcontrib><creatorcontrib>Lukovic, Miloljub D.</creatorcontrib><creatorcontrib>Tadic, Nenad B.</creatorcontrib><creatorcontrib>Vujancevic, Jelena D.</creatorcontrib><creatorcontrib>Vlahovic, Branislav</creatorcontrib><creatorcontrib>Pavlovic, Vladimir B.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electroceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolic, Maria Vesna</au><au>Labus, Nebojsa J.</au><au>Pavlovic, Vera P.</au><au>Markovic, Smilja</au><au>Lukovic, Miloljub D.</au><au>Tadic, Nenad B.</au><au>Vujancevic, Jelena D.</au><au>Vlahovic, Branislav</au><au>Pavlovic, Vladimir B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance</atitle><jtitle>Journal of electroceramics</jtitle><stitle>J Electroceram</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>45</volume><issue>4</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1385-3449</issn><eissn>1573-8663</eissn><abstract>Nanocrystalline Zn 2 SnO 4 /SnO 2 powder was obtained by a solid state reaction of ZnO and SnO 2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30–90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 °C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 °C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10832-021-00232-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5035-0170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-3449
ispartof Journal of electroceramics, 2020-12, Vol.45 (4), p.135-147
issn 1385-3449
1573-8663
language eng
recordid cdi_proquest_journals_2569663561
source SpringerNature Journals
subjects Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Crystal structure
Crystallography and Scattering Methods
Electrochemistry
Equivalent circuits
Frequency ranges
Glass
Grain boundaries
Hopping conduction
Humidity
Impedance
Materials Science
Morphology
Nanocomposites
Nanocrystals
Natural Materials
Optical and Electronic Materials
Phase composition
Raman spectroscopy
Relative humidity
Test chambers
Tin dioxide
Zinc oxide
Zinc stannate
title Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20Zn2SnO4/SnO2:%20Crystal%20structure%20and%20humidity%20influence%20on%20complex%20impedance&rft.jtitle=Journal%20of%20electroceramics&rft.au=Nikolic,%20Maria%20Vesna&rft.date=2020-12-01&rft.volume=45&rft.issue=4&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1385-3449&rft.eissn=1573-8663&rft_id=info:doi/10.1007/s10832-021-00232-z&rft_dat=%3Cproquest_cross%3E2569663561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569663561&rft_id=info:pmid/&rfr_iscdi=true