A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions
Machine learning is a system that can learn by itself by using training data and testing data testing. In a variety of machine learning research has various obstacles in implementation especially in education institution, in its application, many things need to considered for more information to enr...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-03, Vol.1477 (3), p.32019 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 32019 |
container_title | Journal of physics. Conference series |
container_volume | 1477 |
creator | Ranggadara, Indra Sari, Yunita Sartika Dwiasnati, Saruni Prihandi, Ifan Sfenrianto |
description | Machine learning is a system that can learn by itself by using training data and testing data testing. In a variety of machine learning research has various obstacles in implementation especially in education institution, in its application, many things need to considered for more information to enrich research in the area of machine learning by way of comparing various obstacles in implementation in similar research. So that in this study is to find similarities and anticipations made in the initial stages of pre-processing to visualisation, as well as the contribution that can give in this study explains the best alternative for researching following the experience of several researchers in conducting machine learning research. |
doi_str_mv | 10.1088/1742-6596/1477/3/032019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2569643994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569643994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3769-39359054d4e11f60bf6e11e736507a6143c39259e2c27795584d9634d49237913</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm3SNElzOcbUyYbDj-uQtaea0aW1aSf-e1srE0EwNznhPO_J4UHonJIrSpIkpDKOAsGVCGksZchCwiJC1QEa7TuH-zpJjtGJ9xtCWHfkCNkJfoCdhXdc5ni-rQrYgmtMY0uHjcvw_do3Ji3AY-vwqobMpo3dAV6a9NU6wAswtbPuBS_LDApsGjzL2vQrbwo8d76xTdu__Ck6yk3h4ez7HqPn69nT9DZY3N_Mp5NFkDIpVMAU44rwOIuB0lyQdS66AiQTnEgjaMxSpiKuIEojKRXnSZwpwTpeRUwqysboYphb1eVbC77Rm7Ktu228jrhQImZKxR0lByqtS-9ryHVV262pPzQluveqe2O6t6d7r5rpwWuXvByStqx-Rt-tpo-_QV1leQezP-D_vvgEDUKGLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569643994</pqid></control><display><type>article</type><title>A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ranggadara, Indra ; Sari, Yunita Sartika ; Dwiasnati, Saruni ; Prihandi, Ifan ; Sfenrianto</creator><creatorcontrib>Ranggadara, Indra ; Sari, Yunita Sartika ; Dwiasnati, Saruni ; Prihandi, Ifan ; Sfenrianto</creatorcontrib><description>Machine learning is a system that can learn by itself by using training data and testing data testing. In a variety of machine learning research has various obstacles in implementation especially in education institution, in its application, many things need to considered for more information to enrich research in the area of machine learning by way of comparing various obstacles in implementation in similar research. So that in this study is to find similarities and anticipations made in the initial stages of pre-processing to visualisation, as well as the contribution that can give in this study explains the best alternative for researching following the experience of several researchers in conducting machine learning research.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1477/3/032019</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Barriers ; Machine learning ; Physics</subject><ispartof>Journal of physics. Conference series, 2020-03, Vol.1477 (3), p.32019</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3769-39359054d4e11f60bf6e11e736507a6143c39259e2c27795584d9634d49237913</citedby><cites>FETCH-LOGICAL-c3769-39359054d4e11f60bf6e11e736507a6143c39259e2c27795584d9634d49237913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1477/3/032019/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Ranggadara, Indra</creatorcontrib><creatorcontrib>Sari, Yunita Sartika</creatorcontrib><creatorcontrib>Dwiasnati, Saruni</creatorcontrib><creatorcontrib>Prihandi, Ifan</creatorcontrib><creatorcontrib>Sfenrianto</creatorcontrib><title>A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Machine learning is a system that can learn by itself by using training data and testing data testing. In a variety of machine learning research has various obstacles in implementation especially in education institution, in its application, many things need to considered for more information to enrich research in the area of machine learning by way of comparing various obstacles in implementation in similar research. So that in this study is to find similarities and anticipations made in the initial stages of pre-processing to visualisation, as well as the contribution that can give in this study explains the best alternative for researching following the experience of several researchers in conducting machine learning research.</description><subject>Barriers</subject><subject>Machine learning</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Qm3SNElzOcbUyYbDj-uQtaea0aW1aSf-e1srE0EwNznhPO_J4UHonJIrSpIkpDKOAsGVCGksZchCwiJC1QEa7TuH-zpJjtGJ9xtCWHfkCNkJfoCdhXdc5ni-rQrYgmtMY0uHjcvw_do3Ji3AY-vwqobMpo3dAV6a9NU6wAswtbPuBS_LDApsGjzL2vQrbwo8d76xTdu__Ck6yk3h4ez7HqPn69nT9DZY3N_Mp5NFkDIpVMAU44rwOIuB0lyQdS66AiQTnEgjaMxSpiKuIEojKRXnSZwpwTpeRUwqysboYphb1eVbC77Rm7Ktu228jrhQImZKxR0lByqtS-9ryHVV262pPzQluveqe2O6t6d7r5rpwWuXvByStqx-Rt-tpo-_QV1leQezP-D_vvgEDUKGLA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ranggadara, Indra</creator><creator>Sari, Yunita Sartika</creator><creator>Dwiasnati, Saruni</creator><creator>Prihandi, Ifan</creator><creator>Sfenrianto</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200301</creationdate><title>A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions</title><author>Ranggadara, Indra ; Sari, Yunita Sartika ; Dwiasnati, Saruni ; Prihandi, Ifan ; Sfenrianto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3769-39359054d4e11f60bf6e11e736507a6143c39259e2c27795584d9634d49237913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barriers</topic><topic>Machine learning</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranggadara, Indra</creatorcontrib><creatorcontrib>Sari, Yunita Sartika</creatorcontrib><creatorcontrib>Dwiasnati, Saruni</creatorcontrib><creatorcontrib>Prihandi, Ifan</creatorcontrib><creatorcontrib>Sfenrianto</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranggadara, Indra</au><au>Sari, Yunita Sartika</au><au>Dwiasnati, Saruni</au><au>Prihandi, Ifan</au><au>Sfenrianto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>1477</volume><issue>3</issue><spage>32019</spage><pages>32019-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Machine learning is a system that can learn by itself by using training data and testing data testing. In a variety of machine learning research has various obstacles in implementation especially in education institution, in its application, many things need to considered for more information to enrich research in the area of machine learning by way of comparing various obstacles in implementation in similar research. So that in this study is to find similarities and anticipations made in the initial stages of pre-processing to visualisation, as well as the contribution that can give in this study explains the best alternative for researching following the experience of several researchers in conducting machine learning research.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1477/3/032019</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-03, Vol.1477 (3), p.32019 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2569643994 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Barriers Machine learning Physics |
title | A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Implementation%20and%20Obstacles%20in%20Predictive%20Machine%20Learning%20Model%20at%20Educational%20Institutions&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ranggadara,%20Indra&rft.date=2020-03-01&rft.volume=1477&rft.issue=3&rft.spage=32019&rft.pages=32019-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1477/3/032019&rft_dat=%3Cproquest_iop_j%3E2569643994%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569643994&rft_id=info:pmid/&rfr_iscdi=true |