Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy

Laser shock peening (LSP) is an innovative surface treatment, which has been successfully applied in aero-engine compressor blades to improve high cycle fatigue performance. Deep compressive residual stress layer with a gradient distribution can be produced, which is the special advantage of LSP and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-08, Vol.822, p.141658, Article 141658
Hauptverfasser: Nie, Xiangfan, He, Weifeng, Cao, Zhenyang, Song, Jingdong, Li, Xiang, Pang, Zhicong, Yan, Xueyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141658
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 822
creator Nie, Xiangfan
He, Weifeng
Cao, Zhenyang
Song, Jingdong
Li, Xiang
Pang, Zhicong
Yan, Xueyuan
description Laser shock peening (LSP) is an innovative surface treatment, which has been successfully applied in aero-engine compressor blades to improve high cycle fatigue performance. Deep compressive residual stress layer with a gradient distribution can be produced, which is the special advantage of LSP and plays a main role in high cycle fatigue performance improvement. Therefore, compressive residual stress, and especially the gradient distribution feature should be simultaneously considered in high cycle fatigue life prediction for laser-peened component. In this work, firstly, TC4 titanium alloy, a typical material used for aero-engine compressor blade, was treated by LSP with different power densities, overlapping rates and shocks respectively. High cycle fatigue life of TC4 titanium alloy is enhanced from 1473 × 103 cycles to 6148 × 103 cycles, by 317% increase with LSP treatment. Compressive residual stresses with a gradient distribution induced by LSP were disposed into an equivalent parameter according to critical plane method. At last, high cycle fatigue life of laser-peened TC4 titanium alloy specimens was successfully predicted within twice-fold error band, comprehensively considering equivalent compressive residual stress and FINDLEY model.
doi_str_mv 10.1016/j.msea.2021.141658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569410074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321009266</els_id><sourcerecordid>2569410074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4c5e9244e588c2ded90319ce4f8b0928fbf25c4fccb8c487561b39b8d55ebe013</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoenjD_Qk6NmpJEuODL2UkD4g0Et6FrK0ShQc25XkUv_7KqT0WFjYy8zszofQHSVzSmj1sJ8fIug5I4zOKaeVkGdoRuWiLHhdVudoRmpGC0Hq8hJdxbgnhFBOxAzF1fcAwR-gS7rFMY12wrqz2OnktyPg1jvAQwDrTfJ9h_Ps_HaHzWRa-FPlCNeHg-4M4N7hVkcIxQDQgcWbJcfJJ9358YB12_bTDbpwuo1w-7uv0cfzarN8LdbvL2_Lp3VhSiZTwY2AmnEOQkrDLNialLQ2wJ1sch3pGseE4c6YRhouF6KiTVk30goBDRBaXqP7U-4Q-s8RYlL7fgxdPqmYqGpOCVnwrGInlQl9jAGcGjIPHSZFiTrCVXt1hKuOcNUJbjY9nkyQ___yEFQ0HnJ96wOYpGzv_7P_ABkhhEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569410074</pqid></control><display><type>article</type><title>Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nie, Xiangfan ; He, Weifeng ; Cao, Zhenyang ; Song, Jingdong ; Li, Xiang ; Pang, Zhicong ; Yan, Xueyuan</creator><creatorcontrib>Nie, Xiangfan ; He, Weifeng ; Cao, Zhenyang ; Song, Jingdong ; Li, Xiang ; Pang, Zhicong ; Yan, Xueyuan</creatorcontrib><description>Laser shock peening (LSP) is an innovative surface treatment, which has been successfully applied in aero-engine compressor blades to improve high cycle fatigue performance. Deep compressive residual stress layer with a gradient distribution can be produced, which is the special advantage of LSP and plays a main role in high cycle fatigue performance improvement. Therefore, compressive residual stress, and especially the gradient distribution feature should be simultaneously considered in high cycle fatigue life prediction for laser-peened component. In this work, firstly, TC4 titanium alloy, a typical material used for aero-engine compressor blade, was treated by LSP with different power densities, overlapping rates and shocks respectively. High cycle fatigue life of TC4 titanium alloy is enhanced from 1473 × 103 cycles to 6148 × 103 cycles, by 317% increase with LSP treatment. Compressive residual stresses with a gradient distribution induced by LSP were disposed into an equivalent parameter according to critical plane method. At last, high cycle fatigue life of laser-peened TC4 titanium alloy specimens was successfully predicted within twice-fold error band, comprehensively considering equivalent compressive residual stress and FINDLEY model.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141658</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aerospace engines ; Compressive properties ; Compressive residual stress ; Compressor blades ; Equivalence ; Fatigue life ; High cycle fatigue ; Laser shock peening ; Laser shock processing ; Lasers ; Life prediction ; Residual stress ; Surface treatment ; Titanium alloy ; Titanium alloys ; Titanium base alloys</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-08, Vol.822, p.141658, Article 141658</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 3, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4c5e9244e588c2ded90319ce4f8b0928fbf25c4fccb8c487561b39b8d55ebe013</citedby><cites>FETCH-LOGICAL-c328t-4c5e9244e588c2ded90319ce4f8b0928fbf25c4fccb8c487561b39b8d55ebe013</cites><orcidid>0000-0002-7734-4229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509321009266$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Nie, Xiangfan</creatorcontrib><creatorcontrib>He, Weifeng</creatorcontrib><creatorcontrib>Cao, Zhenyang</creatorcontrib><creatorcontrib>Song, Jingdong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Pang, Zhicong</creatorcontrib><creatorcontrib>Yan, Xueyuan</creatorcontrib><title>Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Laser shock peening (LSP) is an innovative surface treatment, which has been successfully applied in aero-engine compressor blades to improve high cycle fatigue performance. Deep compressive residual stress layer with a gradient distribution can be produced, which is the special advantage of LSP and plays a main role in high cycle fatigue performance improvement. Therefore, compressive residual stress, and especially the gradient distribution feature should be simultaneously considered in high cycle fatigue life prediction for laser-peened component. In this work, firstly, TC4 titanium alloy, a typical material used for aero-engine compressor blade, was treated by LSP with different power densities, overlapping rates and shocks respectively. High cycle fatigue life of TC4 titanium alloy is enhanced from 1473 × 103 cycles to 6148 × 103 cycles, by 317% increase with LSP treatment. Compressive residual stresses with a gradient distribution induced by LSP were disposed into an equivalent parameter according to critical plane method. At last, high cycle fatigue life of laser-peened TC4 titanium alloy specimens was successfully predicted within twice-fold error band, comprehensively considering equivalent compressive residual stress and FINDLEY model.</description><subject>Aerospace engines</subject><subject>Compressive properties</subject><subject>Compressive residual stress</subject><subject>Compressor blades</subject><subject>Equivalence</subject><subject>Fatigue life</subject><subject>High cycle fatigue</subject><subject>Laser shock peening</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Life prediction</subject><subject>Residual stress</subject><subject>Surface treatment</subject><subject>Titanium alloy</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoenjD_Qk6NmpJEuODL2UkD4g0Et6FrK0ShQc25XkUv_7KqT0WFjYy8zszofQHSVzSmj1sJ8fIug5I4zOKaeVkGdoRuWiLHhdVudoRmpGC0Hq8hJdxbgnhFBOxAzF1fcAwR-gS7rFMY12wrqz2OnktyPg1jvAQwDrTfJ9h_Ps_HaHzWRa-FPlCNeHg-4M4N7hVkcIxQDQgcWbJcfJJ9358YB12_bTDbpwuo1w-7uv0cfzarN8LdbvL2_Lp3VhSiZTwY2AmnEOQkrDLNialLQ2wJ1sch3pGseE4c6YRhouF6KiTVk30goBDRBaXqP7U-4Q-s8RYlL7fgxdPqmYqGpOCVnwrGInlQl9jAGcGjIPHSZFiTrCVXt1hKuOcNUJbjY9nkyQ___yEFQ0HnJ96wOYpGzv_7P_ABkhhEU</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Nie, Xiangfan</creator><creator>He, Weifeng</creator><creator>Cao, Zhenyang</creator><creator>Song, Jingdong</creator><creator>Li, Xiang</creator><creator>Pang, Zhicong</creator><creator>Yan, Xueyuan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7734-4229</orcidid></search><sort><creationdate>20210803</creationdate><title>Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy</title><author>Nie, Xiangfan ; He, Weifeng ; Cao, Zhenyang ; Song, Jingdong ; Li, Xiang ; Pang, Zhicong ; Yan, Xueyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4c5e9244e588c2ded90319ce4f8b0928fbf25c4fccb8c487561b39b8d55ebe013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace engines</topic><topic>Compressive properties</topic><topic>Compressive residual stress</topic><topic>Compressor blades</topic><topic>Equivalence</topic><topic>Fatigue life</topic><topic>High cycle fatigue</topic><topic>Laser shock peening</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Life prediction</topic><topic>Residual stress</topic><topic>Surface treatment</topic><topic>Titanium alloy</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiangfan</creatorcontrib><creatorcontrib>He, Weifeng</creatorcontrib><creatorcontrib>Cao, Zhenyang</creatorcontrib><creatorcontrib>Song, Jingdong</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Pang, Zhicong</creatorcontrib><creatorcontrib>Yan, Xueyuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiangfan</au><au>He, Weifeng</au><au>Cao, Zhenyang</au><au>Song, Jingdong</au><au>Li, Xiang</au><au>Pang, Zhicong</au><au>Yan, Xueyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-08-03</date><risdate>2021</risdate><volume>822</volume><spage>141658</spage><pages>141658-</pages><artnum>141658</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Laser shock peening (LSP) is an innovative surface treatment, which has been successfully applied in aero-engine compressor blades to improve high cycle fatigue performance. Deep compressive residual stress layer with a gradient distribution can be produced, which is the special advantage of LSP and plays a main role in high cycle fatigue performance improvement. Therefore, compressive residual stress, and especially the gradient distribution feature should be simultaneously considered in high cycle fatigue life prediction for laser-peened component. In this work, firstly, TC4 titanium alloy, a typical material used for aero-engine compressor blade, was treated by LSP with different power densities, overlapping rates and shocks respectively. High cycle fatigue life of TC4 titanium alloy is enhanced from 1473 × 103 cycles to 6148 × 103 cycles, by 317% increase with LSP treatment. Compressive residual stresses with a gradient distribution induced by LSP were disposed into an equivalent parameter according to critical plane method. At last, high cycle fatigue life of laser-peened TC4 titanium alloy specimens was successfully predicted within twice-fold error band, comprehensively considering equivalent compressive residual stress and FINDLEY model.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141658</doi><orcidid>https://orcid.org/0000-0002-7734-4229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-08, Vol.822, p.141658, Article 141658
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2569410074
source Elsevier ScienceDirect Journals Complete
subjects Aerospace engines
Compressive properties
Compressive residual stress
Compressor blades
Equivalence
Fatigue life
High cycle fatigue
Laser shock peening
Laser shock processing
Lasers
Life prediction
Residual stress
Surface treatment
Titanium alloy
Titanium alloys
Titanium base alloys
title Experimental study and fatigue life prediction on high cycle fatigue performance of laser-peened TC4 titanium alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20and%20fatigue%20life%20prediction%20on%20high%20cycle%20fatigue%20performance%20of%20laser-peened%20TC4%20titanium%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Nie,%20Xiangfan&rft.date=2021-08-03&rft.volume=822&rft.spage=141658&rft.pages=141658-&rft.artnum=141658&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141658&rft_dat=%3Cproquest_cross%3E2569410074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569410074&rft_id=info:pmid/&rft_els_id=S0921509321009266&rfr_iscdi=true