Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction
The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformatio...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2021-08, Vol.42 (8), p.2056-2063 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2063 |
---|---|
container_issue | 8 |
container_start_page | 2056 |
container_title | Lobachevskii journal of mathematics |
container_volume | 42 |
creator | Sultanov, L. U. |
description | The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method. |
doi_str_mv | 10.1134/S199508022108031X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569394321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569394321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAz9Vc2mbN46hTBwMfVPCtZElaO9qmJpnit_e2CT6IL5eD_-93XI6QS2DXAGl28wRS5qxgnAPWFF6PyAQKKBIpBT_GHuNkl5-SsxA2DEEhxITo0vXjNqrYukF1dN41zrfxrae183Q5fNgQ22af0pXyjaWLToXoxl1tNb21yPX7PNBPFGnphqh0RDdajw0m5-SkVl2wFz_vlLzcLZ7Lh2T1eL8s56tE80zExOYiY2vDQFrBTJplVuYAUqlCaAVMzkytBORmZlhtCjZTIGpjjDU81WtW8HRKrg5zR-_et7h5tXFbj98KFc-FTGWWckAKDpT2LgRv62r0ba_8VwWs2t2y-nNLdPjBCcgOjfW_k_-XvgGYNnfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569394321</pqid></control><display><type>article</type><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sultanov, L. U.</creator><creatorcontrib>Sultanov, L. U.</creatorcontrib><description>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S199508022108031X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Deformation ; Elastoplasticity ; Finite element method ; Geometric nonlinearity ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-08, Vol.42 (8), p.2056-2063</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</citedby><cites>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S199508022108031X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S199508022108031X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sultanov, L. U.</creatorcontrib><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Deformation</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Geometric nonlinearity</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeAz9Vc2mbN46hTBwMfVPCtZElaO9qmJpnit_e2CT6IL5eD_-93XI6QS2DXAGl28wRS5qxgnAPWFF6PyAQKKBIpBT_GHuNkl5-SsxA2DEEhxITo0vXjNqrYukF1dN41zrfxrae183Q5fNgQ22af0pXyjaWLToXoxl1tNb21yPX7PNBPFGnphqh0RDdajw0m5-SkVl2wFz_vlLzcLZ7Lh2T1eL8s56tE80zExOYiY2vDQFrBTJplVuYAUqlCaAVMzkytBORmZlhtCjZTIGpjjDU81WtW8HRKrg5zR-_et7h5tXFbj98KFc-FTGWWckAKDpT2LgRv62r0ba_8VwWs2t2y-nNLdPjBCcgOjfW_k_-XvgGYNnfy</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sultanov, L. U.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><author>Sultanov, L. U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Deformation</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Geometric nonlinearity</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sultanov, L. U.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sultanov, L. U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>42</volume><issue>8</issue><spage>2056</spage><epage>2063</epage><pages>2056-2063</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199508022108031X</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2021-08, Vol.42 (8), p.2056-2063 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2569394321 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Analysis Deformation Elastoplasticity Finite element method Geometric nonlinearity Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Nonlinear systems Probability Theory and Stochastic Processes |
title | Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Algorithm%20for%20Investigation%20Large%20Elastoplastic%20Deformations%20with%20Contact%20Interaction&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Sultanov,%20L.%20U.&rft.date=2021-08-01&rft.volume=42&rft.issue=8&rft.spage=2056&rft.epage=2063&rft.pages=2056-2063&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S199508022108031X&rft_dat=%3Cproquest_cross%3E2569394321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569394321&rft_id=info:pmid/&rfr_iscdi=true |