Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction

The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-08, Vol.42 (8), p.2056-2063
1. Verfasser: Sultanov, L. U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2063
container_issue 8
container_start_page 2056
container_title Lobachevskii journal of mathematics
container_volume 42
creator Sultanov, L. U.
description The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.
doi_str_mv 10.1134/S199508022108031X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569394321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569394321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAz9Vc2mbN46hTBwMfVPCtZElaO9qmJpnit_e2CT6IL5eD_-93XI6QS2DXAGl28wRS5qxgnAPWFF6PyAQKKBIpBT_GHuNkl5-SsxA2DEEhxITo0vXjNqrYukF1dN41zrfxrae183Q5fNgQ22af0pXyjaWLToXoxl1tNb21yPX7PNBPFGnphqh0RDdajw0m5-SkVl2wFz_vlLzcLZ7Lh2T1eL8s56tE80zExOYiY2vDQFrBTJplVuYAUqlCaAVMzkytBORmZlhtCjZTIGpjjDU81WtW8HRKrg5zR-_et7h5tXFbj98KFc-FTGWWckAKDpT2LgRv62r0ba_8VwWs2t2y-nNLdPjBCcgOjfW_k_-XvgGYNnfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569394321</pqid></control><display><type>article</type><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sultanov, L. U.</creator><creatorcontrib>Sultanov, L. U.</creatorcontrib><description>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S199508022108031X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Deformation ; Elastoplasticity ; Finite element method ; Geometric nonlinearity ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Nonlinear systems ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2021-08, Vol.42 (8), p.2056-2063</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</citedby><cites>FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S199508022108031X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S199508022108031X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sultanov, L. U.</creatorcontrib><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Deformation</subject><subject>Elastoplasticity</subject><subject>Finite element method</subject><subject>Geometric nonlinearity</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear systems</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4MoOKcfwLeAz9Vc2mbN46hTBwMfVPCtZElaO9qmJpnit_e2CT6IL5eD_-93XI6QS2DXAGl28wRS5qxgnAPWFF6PyAQKKBIpBT_GHuNkl5-SsxA2DEEhxITo0vXjNqrYukF1dN41zrfxrae183Q5fNgQ22af0pXyjaWLToXoxl1tNb21yPX7PNBPFGnphqh0RDdajw0m5-SkVl2wFz_vlLzcLZ7Lh2T1eL8s56tE80zExOYiY2vDQFrBTJplVuYAUqlCaAVMzkytBORmZlhtCjZTIGpjjDU81WtW8HRKrg5zR-_et7h5tXFbj98KFc-FTGWWckAKDpT2LgRv62r0ba_8VwWs2t2y-nNLdPjBCcgOjfW_k_-XvgGYNnfy</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Sultanov, L. U.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</title><author>Sultanov, L. U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e5640bd019e60d344e95119aa86ca1097dfa615d7d0fd807a16fddded23cb0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Deformation</topic><topic>Elastoplasticity</topic><topic>Finite element method</topic><topic>Geometric nonlinearity</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear systems</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sultanov, L. U.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sultanov, L. U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>42</volume><issue>8</issue><spage>2056</spage><epage>2063</epage><pages>2056-2063</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>The paper is dedicated to the construction of a computational algorithm for the investigation of solids, taking into account the material and geometric nonlinearity and contact interaction. In the framework of the previously developed algorithm for the investigation of large elastoplastic deformations of solids the solutions of contact problems are derived. The algorithm has been based on the equation of the principle of virtual work in velocity terms. Contact interaction is modeled over the basis of the master-slave approach with penalty method. The closest point projection procedure is used to find the contact area. For the solution of the nonlinear system of equations incremental method is applied. The numerical implementation is based on the finite element method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S199508022108031X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-08, Vol.42 (8), p.2056-2063
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2569394321
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Analysis
Deformation
Elastoplasticity
Finite element method
Geometric nonlinearity
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Nonlinear systems
Probability Theory and Stochastic Processes
title Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Algorithm%20for%20Investigation%20Large%20Elastoplastic%20Deformations%20with%20Contact%20Interaction&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Sultanov,%20L.%20U.&rft.date=2021-08-01&rft.volume=42&rft.issue=8&rft.spage=2056&rft.epage=2063&rft.pages=2056-2063&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S199508022108031X&rft_dat=%3Cproquest_cross%3E2569394321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569394321&rft_id=info:pmid/&rfr_iscdi=true