Systematic reviews in sentiment analysis: a tertiary study
With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis h...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2021-10, Vol.54 (7), p.4997-5053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5053 |
---|---|
container_issue | 7 |
container_start_page | 4997 |
container_title | The Artificial intelligence review |
container_volume | 54 |
creator | Ligthart, Alexander Catal, Cagatay Tekinerdogan, Bedir |
description | With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis. |
doi_str_mv | 10.1007/s10462-021-09973-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2569279982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718211343</galeid><sourcerecordid>A718211343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-Nsn2VopfUPCgnkM2my0p3d2aSZX996au4E0CyTC8zzB5ELqm5JYSou6AEiEZJoxiUlWKY36CZrTMhcr9UzQjTFaYaUbP0QXAlhBSMsFnaPE6QvKdTcEV0X8G_wVF6AvwfQpdvgrb290IARaFLZKPKdg4FpAOzXiJzlq7A3_1-87R-8P92-oJr18en1fLNXaipAkL15CyZFJozmzT1pVygvCSaC3aWmqWQ7LRtvV1LZWuHae2sV66RgqnnBN8jm6mufs4fBw8JLMdDjGvBYaVsmKqqjTLqdsptbE7b0LfDilal0_ju-CG3rch95eKZgeUC54BNgEuDgDRt2YfQ5d_ZygxR6lmkmqyVPMj1RwhPkGQw_3Gx79d_qG-AfBbeXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569279982</pqid></control><display><type>article</type><title>Systematic reviews in sentiment analysis: a tertiary study</title><source>Springer Nature - Complete Springer Journals</source><creator>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</creator><creatorcontrib>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</creatorcontrib><description>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-021-09973-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Computational linguistics ; Computer Science ; Data mining ; Deep learning ; Digitization ; Language processing ; Literature reviews ; Machine learning ; Natural language interfaces ; Sentiment analysis ; User generated content ; Web sites</subject><ispartof>The Artificial intelligence review, 2021-10, Vol.54 (7), p.4997-5053</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</citedby><cites>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</cites><orcidid>0000-0003-0959-2930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-021-09973-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-021-09973-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ligthart, Alexander</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Tekinerdogan, Bedir</creatorcontrib><title>Systematic reviews in sentiment analysis: a tertiary study</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Digitization</subject><subject>Language processing</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Sentiment analysis</subject><subject>User generated content</subject><subject>Web sites</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-Nsn2VopfUPCgnkM2my0p3d2aSZX996au4E0CyTC8zzB5ELqm5JYSou6AEiEZJoxiUlWKY36CZrTMhcr9UzQjTFaYaUbP0QXAlhBSMsFnaPE6QvKdTcEV0X8G_wVF6AvwfQpdvgrb290IARaFLZKPKdg4FpAOzXiJzlq7A3_1-87R-8P92-oJr18en1fLNXaipAkL15CyZFJozmzT1pVygvCSaC3aWmqWQ7LRtvV1LZWuHae2sV66RgqnnBN8jm6mufs4fBw8JLMdDjGvBYaVsmKqqjTLqdsptbE7b0LfDilal0_ju-CG3rch95eKZgeUC54BNgEuDgDRt2YfQ5d_ZygxR6lmkmqyVPMj1RwhPkGQw_3Gx79d_qG-AfBbeXg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ligthart, Alexander</creator><creator>Catal, Cagatay</creator><creator>Tekinerdogan, Bedir</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid></search><sort><creationdate>20211001</creationdate><title>Systematic reviews in sentiment analysis: a tertiary study</title><author>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Digitization</topic><topic>Language processing</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Sentiment analysis</topic><topic>User generated content</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligthart, Alexander</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Tekinerdogan, Bedir</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligthart, Alexander</au><au>Catal, Cagatay</au><au>Tekinerdogan, Bedir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic reviews in sentiment analysis: a tertiary study</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>54</volume><issue>7</issue><spage>4997</spage><epage>5053</epage><pages>4997-5053</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-021-09973-3</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2021-10, Vol.54 (7), p.4997-5053 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_2569279982 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial Intelligence Computational linguistics Computer Science Data mining Deep learning Digitization Language processing Literature reviews Machine learning Natural language interfaces Sentiment analysis User generated content Web sites |
title | Systematic reviews in sentiment analysis: a tertiary study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20reviews%20in%20sentiment%20analysis:%20a%20tertiary%20study&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Ligthart,%20Alexander&rft.date=2021-10-01&rft.volume=54&rft.issue=7&rft.spage=4997&rft.epage=5053&rft.pages=4997-5053&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-021-09973-3&rft_dat=%3Cgale_proqu%3EA718211343%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569279982&rft_id=info:pmid/&rft_galeid=A718211343&rfr_iscdi=true |