Systematic reviews in sentiment analysis: a tertiary study

With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2021-10, Vol.54 (7), p.4997-5053
Hauptverfasser: Ligthart, Alexander, Catal, Cagatay, Tekinerdogan, Bedir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5053
container_issue 7
container_start_page 4997
container_title The Artificial intelligence review
container_volume 54
creator Ligthart, Alexander
Catal, Cagatay
Tekinerdogan, Bedir
description With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.
doi_str_mv 10.1007/s10462-021-09973-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2569279982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718211343</galeid><sourcerecordid>A718211343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-Nsn2VopfUPCgnkM2my0p3d2aSZX996au4E0CyTC8zzB5ELqm5JYSou6AEiEZJoxiUlWKY36CZrTMhcr9UzQjTFaYaUbP0QXAlhBSMsFnaPE6QvKdTcEV0X8G_wVF6AvwfQpdvgrb290IARaFLZKPKdg4FpAOzXiJzlq7A3_1-87R-8P92-oJr18en1fLNXaipAkL15CyZFJozmzT1pVygvCSaC3aWmqWQ7LRtvV1LZWuHae2sV66RgqnnBN8jm6mufs4fBw8JLMdDjGvBYaVsmKqqjTLqdsptbE7b0LfDilal0_ju-CG3rch95eKZgeUC54BNgEuDgDRt2YfQ5d_ZygxR6lmkmqyVPMj1RwhPkGQw_3Gx79d_qG-AfBbeXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569279982</pqid></control><display><type>article</type><title>Systematic reviews in sentiment analysis: a tertiary study</title><source>Springer Nature - Complete Springer Journals</source><creator>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</creator><creatorcontrib>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</creatorcontrib><description>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-021-09973-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Computational linguistics ; Computer Science ; Data mining ; Deep learning ; Digitization ; Language processing ; Literature reviews ; Machine learning ; Natural language interfaces ; Sentiment analysis ; User generated content ; Web sites</subject><ispartof>The Artificial intelligence review, 2021-10, Vol.54 (7), p.4997-5053</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</citedby><cites>FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</cites><orcidid>0000-0003-0959-2930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-021-09973-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-021-09973-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ligthart, Alexander</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Tekinerdogan, Bedir</creatorcontrib><title>Systematic reviews in sentiment analysis: a tertiary study</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational linguistics</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Digitization</subject><subject>Language processing</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Sentiment analysis</subject><subject>User generated content</subject><subject>Web sites</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52i-Nsn2VopfUPCgnkM2my0p3d2aSZX996au4E0CyTC8zzB5ELqm5JYSou6AEiEZJoxiUlWKY36CZrTMhcr9UzQjTFaYaUbP0QXAlhBSMsFnaPE6QvKdTcEV0X8G_wVF6AvwfQpdvgrb290IARaFLZKPKdg4FpAOzXiJzlq7A3_1-87R-8P92-oJr18en1fLNXaipAkL15CyZFJozmzT1pVygvCSaC3aWmqWQ7LRtvV1LZWuHae2sV66RgqnnBN8jm6mufs4fBw8JLMdDjGvBYaVsmKqqjTLqdsptbE7b0LfDilal0_ju-CG3rch95eKZgeUC54BNgEuDgDRt2YfQ5d_ZygxR6lmkmqyVPMj1RwhPkGQw_3Gx79d_qG-AfBbeXg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ligthart, Alexander</creator><creator>Catal, Cagatay</creator><creator>Tekinerdogan, Bedir</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid></search><sort><creationdate>20211001</creationdate><title>Systematic reviews in sentiment analysis: a tertiary study</title><author>Ligthart, Alexander ; Catal, Cagatay ; Tekinerdogan, Bedir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4cd055264832adfb97c40350884fb6824516d8afebb678bc31adae6cd64c7cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational linguistics</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Digitization</topic><topic>Language processing</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Sentiment analysis</topic><topic>User generated content</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligthart, Alexander</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Tekinerdogan, Bedir</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligthart, Alexander</au><au>Catal, Cagatay</au><au>Tekinerdogan, Bedir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic reviews in sentiment analysis: a tertiary study</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>54</volume><issue>7</issue><spage>4997</spage><epage>5053</epage><pages>4997-5053</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>With advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-021-09973-3</doi><tpages>57</tpages><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0269-2821
ispartof The Artificial intelligence review, 2021-10, Vol.54 (7), p.4997-5053
issn 0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2569279982
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Computational linguistics
Computer Science
Data mining
Deep learning
Digitization
Language processing
Literature reviews
Machine learning
Natural language interfaces
Sentiment analysis
User generated content
Web sites
title Systematic reviews in sentiment analysis: a tertiary study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20reviews%20in%20sentiment%20analysis:%20a%20tertiary%20study&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Ligthart,%20Alexander&rft.date=2021-10-01&rft.volume=54&rft.issue=7&rft.spage=4997&rft.epage=5053&rft.pages=4997-5053&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-021-09973-3&rft_dat=%3Cgale_proqu%3EA718211343%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569279982&rft_id=info:pmid/&rft_galeid=A718211343&rfr_iscdi=true