MBPI: Mixed behaviors and preference interaction for session-based recommendation

Session-based recommendation is a task to recommend the next clicked item when the user’s current interaction sequence is given. Accurately modeling the session representation is critical for session-based recommendation. However, we find that most current methods for session-based recommendation ju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-10, Vol.51 (10), p.7440-7452
Hauptverfasser: Zhang, Jinjin, Ma, Chenhui, Zhong, Chengliang, Mu, Xiaodong, Wang, Lizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7452
container_issue 10
container_start_page 7440
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 51
creator Zhang, Jinjin
Ma, Chenhui
Zhong, Chengliang
Mu, Xiaodong
Wang, Lizhi
description Session-based recommendation is a task to recommend the next clicked item when the user’s current interaction sequence is given. Accurately modeling the session representation is critical for session-based recommendation. However, we find that most current methods for session-based recommendation just use conscious behavior and information in the current session, ignoring the information of unconscious behavior in the current session and preference interaction with neighborhood sessions. In this paper, we propose a Mixed Behaviors and Preference Interaction model (MBPI), which utilizes conscious and unconscious behaviors and parallel co-attention mechanism, for session-based recommendation. In MBPI, we apply a Gated Recurrent Unit (GRU) to generate the session global preference, and employ another GRU with an item-level attention mechanism to explore the session local preference, with the multi-feature behaviors. Then, we introduce a parallel co-attention mechanism to capture the preference interaction with the help of the current session and neighborhood sessions and to update the two preferences of the current session. Finally, we combine the session global preference and session local preference as session representation and make recommendation. Experimental results on three real-world datasets show our method outperforms the state-of-the-art methods and validate the effectiveness of our approach.
doi_str_mv 10.1007/s10489-021-02284-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569112720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569112720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c233f3903d2588ca013d728b11c3ae015b7e6ce260e5a4c00afb74daa46ecea13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeC5-hM0jatN138WNhFBQVvIU2n2sVt1qQr-u_NWsGbh2Hm8LwzzMPYMcIpAqizgJCVFQeBsUSZ8XKHJZgryVVWqV2WQCUyXhTV8z47CGEJAFICJuxhcXk_O08X3Sc1aU2v5qNzPqSmb9K1p5Y89ZbSrh_IGzt0rk9b59NAIcSZ1ybEmCfrVivqG7MFDtlea94CHf32CXu6vnqc3vL53c1sejHnVmI1cCukbGUFshF5WVoDKBslyhrRSkOAea2osCQKoNxkFsC0tcoaY7KCLBmUE3Yy7l17976hMOil2_g-ntQiLypEoQRESoyU9S6E-JFe-25l_JdG0Ft1elSnozr9o06XMSTHUIhw_0L-b_U_qW_WoXHd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569112720</pqid></control><display><type>article</type><title>MBPI: Mixed behaviors and preference interaction for session-based recommendation</title><source>SpringerLink Journals</source><creator>Zhang, Jinjin ; Ma, Chenhui ; Zhong, Chengliang ; Mu, Xiaodong ; Wang, Lizhi</creator><creatorcontrib>Zhang, Jinjin ; Ma, Chenhui ; Zhong, Chengliang ; Mu, Xiaodong ; Wang, Lizhi</creatorcontrib><description>Session-based recommendation is a task to recommend the next clicked item when the user’s current interaction sequence is given. Accurately modeling the session representation is critical for session-based recommendation. However, we find that most current methods for session-based recommendation just use conscious behavior and information in the current session, ignoring the information of unconscious behavior in the current session and preference interaction with neighborhood sessions. In this paper, we propose a Mixed Behaviors and Preference Interaction model (MBPI), which utilizes conscious and unconscious behaviors and parallel co-attention mechanism, for session-based recommendation. In MBPI, we apply a Gated Recurrent Unit (GRU) to generate the session global preference, and employ another GRU with an item-level attention mechanism to explore the session local preference, with the multi-feature behaviors. Then, we introduce a parallel co-attention mechanism to capture the preference interaction with the help of the current session and neighborhood sessions and to update the two preferences of the current session. Finally, we combine the session global preference and session local preference as session representation and make recommendation. Experimental results on three real-world datasets show our method outperforms the state-of-the-art methods and validate the effectiveness of our approach.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02284-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Attention ; Behavior ; Computer Science ; Interaction models ; Machines ; Manufacturing ; Mechanical Engineering ; Preferences ; Processes ; Recommender systems ; Representations</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2021-10, Vol.51 (10), p.7440-7452</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c233f3903d2588ca013d728b11c3ae015b7e6ce260e5a4c00afb74daa46ecea13</citedby><cites>FETCH-LOGICAL-c319t-c233f3903d2588ca013d728b11c3ae015b7e6ce260e5a4c00afb74daa46ecea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-021-02284-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-021-02284-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Jinjin</creatorcontrib><creatorcontrib>Ma, Chenhui</creatorcontrib><creatorcontrib>Zhong, Chengliang</creatorcontrib><creatorcontrib>Mu, Xiaodong</creatorcontrib><creatorcontrib>Wang, Lizhi</creatorcontrib><title>MBPI: Mixed behaviors and preference interaction for session-based recommendation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Session-based recommendation is a task to recommend the next clicked item when the user’s current interaction sequence is given. Accurately modeling the session representation is critical for session-based recommendation. However, we find that most current methods for session-based recommendation just use conscious behavior and information in the current session, ignoring the information of unconscious behavior in the current session and preference interaction with neighborhood sessions. In this paper, we propose a Mixed Behaviors and Preference Interaction model (MBPI), which utilizes conscious and unconscious behaviors and parallel co-attention mechanism, for session-based recommendation. In MBPI, we apply a Gated Recurrent Unit (GRU) to generate the session global preference, and employ another GRU with an item-level attention mechanism to explore the session local preference, with the multi-feature behaviors. Then, we introduce a parallel co-attention mechanism to capture the preference interaction with the help of the current session and neighborhood sessions and to update the two preferences of the current session. Finally, we combine the session global preference and session local preference as session representation and make recommendation. Experimental results on three real-world datasets show our method outperforms the state-of-the-art methods and validate the effectiveness of our approach.</description><subject>Artificial Intelligence</subject><subject>Attention</subject><subject>Behavior</subject><subject>Computer Science</subject><subject>Interaction models</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Preferences</subject><subject>Processes</subject><subject>Recommender systems</subject><subject>Representations</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeC5-hM0jatN138WNhFBQVvIU2n2sVt1qQr-u_NWsGbh2Hm8LwzzMPYMcIpAqizgJCVFQeBsUSZ8XKHJZgryVVWqV2WQCUyXhTV8z47CGEJAFICJuxhcXk_O08X3Sc1aU2v5qNzPqSmb9K1p5Y89ZbSrh_IGzt0rk9b59NAIcSZ1ybEmCfrVivqG7MFDtlea94CHf32CXu6vnqc3vL53c1sejHnVmI1cCukbGUFshF5WVoDKBslyhrRSkOAea2osCQKoNxkFsC0tcoaY7KCLBmUE3Yy7l17976hMOil2_g-ntQiLypEoQRESoyU9S6E-JFe-25l_JdG0Ft1elSnozr9o06XMSTHUIhw_0L-b_U_qW_WoXHd</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Jinjin</creator><creator>Ma, Chenhui</creator><creator>Zhong, Chengliang</creator><creator>Mu, Xiaodong</creator><creator>Wang, Lizhi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>MBPI: Mixed behaviors and preference interaction for session-based recommendation</title><author>Zhang, Jinjin ; Ma, Chenhui ; Zhong, Chengliang ; Mu, Xiaodong ; Wang, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c233f3903d2588ca013d728b11c3ae015b7e6ce260e5a4c00afb74daa46ecea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Attention</topic><topic>Behavior</topic><topic>Computer Science</topic><topic>Interaction models</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Preferences</topic><topic>Processes</topic><topic>Recommender systems</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinjin</creatorcontrib><creatorcontrib>Ma, Chenhui</creatorcontrib><creatorcontrib>Zhong, Chengliang</creatorcontrib><creatorcontrib>Mu, Xiaodong</creatorcontrib><creatorcontrib>Wang, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinjin</au><au>Ma, Chenhui</au><au>Zhong, Chengliang</au><au>Mu, Xiaodong</au><au>Wang, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MBPI: Mixed behaviors and preference interaction for session-based recommendation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>51</volume><issue>10</issue><spage>7440</spage><epage>7452</epage><pages>7440-7452</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Session-based recommendation is a task to recommend the next clicked item when the user’s current interaction sequence is given. Accurately modeling the session representation is critical for session-based recommendation. However, we find that most current methods for session-based recommendation just use conscious behavior and information in the current session, ignoring the information of unconscious behavior in the current session and preference interaction with neighborhood sessions. In this paper, we propose a Mixed Behaviors and Preference Interaction model (MBPI), which utilizes conscious and unconscious behaviors and parallel co-attention mechanism, for session-based recommendation. In MBPI, we apply a Gated Recurrent Unit (GRU) to generate the session global preference, and employ another GRU with an item-level attention mechanism to explore the session local preference, with the multi-feature behaviors. Then, we introduce a parallel co-attention mechanism to capture the preference interaction with the help of the current session and neighborhood sessions and to update the two preferences of the current session. Finally, we combine the session global preference and session local preference as session representation and make recommendation. Experimental results on three real-world datasets show our method outperforms the state-of-the-art methods and validate the effectiveness of our approach.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-02284-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2021-10, Vol.51 (10), p.7440-7452
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2569112720
source SpringerLink Journals
subjects Artificial Intelligence
Attention
Behavior
Computer Science
Interaction models
Machines
Manufacturing
Mechanical Engineering
Preferences
Processes
Recommender systems
Representations
title MBPI: Mixed behaviors and preference interaction for session-based recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MBPI:%20Mixed%20behaviors%20and%20preference%20interaction%20for%20session-based%20recommendation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Zhang,%20Jinjin&rft.date=2021-10-01&rft.volume=51&rft.issue=10&rft.spage=7440&rft.epage=7452&rft.pages=7440-7452&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02284-8&rft_dat=%3Cproquest_cross%3E2569112720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569112720&rft_id=info:pmid/&rfr_iscdi=true