Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language

StandardChinese natural sign language (CNSL) contains over 8,000 words. We consider dividing the task of CNSL recognition into multiple subtasks. Few-shot learning on subtasks can achieve minimal acquisition cost and short-term training. However, the existing few-shot learning methods do not take in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-10, Vol.51 (10), p.7139-7150
Hauptverfasser: Wang, Fei, Li, Chen, Zeng, Zhen, Xu, Ke, Cheng, Sirui, Liu, Yanjun, Sun, Shizhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7150
container_issue 10
container_start_page 7139
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 51
creator Wang, Fei
Li, Chen
Zeng, Zhen
Xu, Ke
Cheng, Sirui
Liu, Yanjun
Sun, Shizhuo
description StandardChinese natural sign language (CNSL) contains over 8,000 words. We consider dividing the task of CNSL recognition into multiple subtasks. Few-shot learning on subtasks can achieve minimal acquisition cost and short-term training. However, the existing few-shot learning methods do not take into account the impact of ill-conditioned support samples, so we propose a new metric-based model, Cornerstone Network (CN), to complete the subtasks. CN is mainly composed of feature extractor (optional), embedding network and cornerstone generator. The cornerstone generator is designed as a semi-supervised clusterer. Compared with other metric-based few-shot models, CN without feature extractor improves 5-shot accuracy on Omniglot and miniImageNet. In order to verify the feasibility of our model on the task of CNSL recognition, we expanded the Chinese Natural Sign Language database, from CNSL-80 to CNSL-139, which integrates surface electromyography and inertial signals. The 5-shot accuracy on CNSL-139 increases from 65.25% to 68.83% comparing with the state-of-art model. After connecting with the 1-D convolution feature extractor using Siamese Network’s idea for secondary training, the accuracy increases by 10.38%. During the online test, the feature vector norms are used for selective matching. Although the accuracy drops, it is still at least 5% higher than that without feature extractor. Experimental results confirm the effectiveness of our model on 2-D images and 1-D time-series signals and the improvement of real-time recognition by SM.
doi_str_mv 10.1007/s10489-020-02170-9
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2569112669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569112669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a5649021b7c3ab163037bec323ea00db25276f37ae2b8851fc11bcc7e1039c93</originalsourceid><addsrcrecordid>eNqNkE1vGyEQhlHVSHWT_IGckHqMSAfYXUxu0apJKlnqJYfcEItn7fUHuMDK7b8P7lbJLQrSiDk878A8hFxxuOEA6nviUM01AwGluAKmP5EZr5VkqtLqM5mBFhVrGv38hXxNaQMAUgKfkW0boseYcvBIPeZjiFt6HPKa9mjzGJHinxytyyHeUkv3mOPgWGcTLgtxZGkdMt2HJe5oHyJ168FjKpNOWbujaVh5urN-NdoVXpCz3u4SXv6_z8nT_Y-n9pEtfj38bO8WzEmuM7N1U-myRaectB1vJEjVoZNCogVYdqIWqumlsii6-bzmveO8c04hB6mdlufk2zT2EMPvEVM2mzBGX140om4056J4KJSYKBdDShF7c4jD3sa_hoM5OTWTU1Ocmn9OzSk0n0JH7EKf3IDe4WuwSG1EOVCVDng7ZJuH4Nsw-lyi1x-PFlpOdCqEX2F82-Gd770AqhebfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569112669</pqid></control><display><type>article</type><title>Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Fei ; Li, Chen ; Zeng, Zhen ; Xu, Ke ; Cheng, Sirui ; Liu, Yanjun ; Sun, Shizhuo</creator><creatorcontrib>Wang, Fei ; Li, Chen ; Zeng, Zhen ; Xu, Ke ; Cheng, Sirui ; Liu, Yanjun ; Sun, Shizhuo</creatorcontrib><description>StandardChinese natural sign language (CNSL) contains over 8,000 words. We consider dividing the task of CNSL recognition into multiple subtasks. Few-shot learning on subtasks can achieve minimal acquisition cost and short-term training. However, the existing few-shot learning methods do not take into account the impact of ill-conditioned support samples, so we propose a new metric-based model, Cornerstone Network (CN), to complete the subtasks. CN is mainly composed of feature extractor (optional), embedding network and cornerstone generator. The cornerstone generator is designed as a semi-supervised clusterer. Compared with other metric-based few-shot models, CN without feature extractor improves 5-shot accuracy on Omniglot and miniImageNet. In order to verify the feasibility of our model on the task of CNSL recognition, we expanded the Chinese Natural Sign Language database, from CNSL-80 to CNSL-139, which integrates surface electromyography and inertial signals. The 5-shot accuracy on CNSL-139 increases from 65.25% to 68.83% comparing with the state-of-art model. After connecting with the 1-D convolution feature extractor using Siamese Network’s idea for secondary training, the accuracy increases by 10.38%. During the online test, the feature vector norms are used for selective matching. Although the accuracy drops, it is still at least 5% higher than that without feature extractor. Experimental results confirm the effectiveness of our model on 2-D images and 1-D time-series signals and the improvement of real-time recognition by SM.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-020-02170-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Computer Science ; Computer Science, Artificial Intelligence ; Feature extraction ; Learning ; Machines ; Manufacturing ; Mechanical Engineering ; Norms ; Object recognition ; Processes ; Science &amp; Technology ; Sign language ; Technology ; Training ; Two dimensional models</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2021-10, Vol.51 (10), p.7139-7150</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000622220400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-a5649021b7c3ab163037bec323ea00db25276f37ae2b8851fc11bcc7e1039c93</citedby><cites>FETCH-LOGICAL-c319t-a5649021b7c3ab163037bec323ea00db25276f37ae2b8851fc11bcc7e1039c93</cites><orcidid>0000-0001-8296-8039 ; 0000-0003-3766-2203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-020-02170-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-020-02170-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zeng, Zhen</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Cheng, Sirui</creatorcontrib><creatorcontrib>Liu, Yanjun</creatorcontrib><creatorcontrib>Sun, Shizhuo</creatorcontrib><title>Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><addtitle>APPL INTELL</addtitle><description>StandardChinese natural sign language (CNSL) contains over 8,000 words. We consider dividing the task of CNSL recognition into multiple subtasks. Few-shot learning on subtasks can achieve minimal acquisition cost and short-term training. However, the existing few-shot learning methods do not take into account the impact of ill-conditioned support samples, so we propose a new metric-based model, Cornerstone Network (CN), to complete the subtasks. CN is mainly composed of feature extractor (optional), embedding network and cornerstone generator. The cornerstone generator is designed as a semi-supervised clusterer. Compared with other metric-based few-shot models, CN without feature extractor improves 5-shot accuracy on Omniglot and miniImageNet. In order to verify the feasibility of our model on the task of CNSL recognition, we expanded the Chinese Natural Sign Language database, from CNSL-80 to CNSL-139, which integrates surface electromyography and inertial signals. The 5-shot accuracy on CNSL-139 increases from 65.25% to 68.83% comparing with the state-of-art model. After connecting with the 1-D convolution feature extractor using Siamese Network’s idea for secondary training, the accuracy increases by 10.38%. During the online test, the feature vector norms are used for selective matching. Although the accuracy drops, it is still at least 5% higher than that without feature extractor. Experimental results confirm the effectiveness of our model on 2-D images and 1-D time-series signals and the improvement of real-time recognition by SM.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Norms</subject><subject>Object recognition</subject><subject>Processes</subject><subject>Science &amp; Technology</subject><subject>Sign language</subject><subject>Technology</subject><subject>Training</subject><subject>Two dimensional models</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1vGyEQhlHVSHWT_IGckHqMSAfYXUxu0apJKlnqJYfcEItn7fUHuMDK7b8P7lbJLQrSiDk878A8hFxxuOEA6nviUM01AwGluAKmP5EZr5VkqtLqM5mBFhVrGv38hXxNaQMAUgKfkW0boseYcvBIPeZjiFt6HPKa9mjzGJHinxytyyHeUkv3mOPgWGcTLgtxZGkdMt2HJe5oHyJ168FjKpNOWbujaVh5urN-NdoVXpCz3u4SXv6_z8nT_Y-n9pEtfj38bO8WzEmuM7N1U-myRaectB1vJEjVoZNCogVYdqIWqumlsii6-bzmveO8c04hB6mdlufk2zT2EMPvEVM2mzBGX140om4056J4KJSYKBdDShF7c4jD3sa_hoM5OTWTU1Ocmn9OzSk0n0JH7EKf3IDe4WuwSG1EOVCVDng7ZJuH4Nsw-lyi1x-PFlpOdCqEX2F82-Gd770AqhebfQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wang, Fei</creator><creator>Li, Chen</creator><creator>Zeng, Zhen</creator><creator>Xu, Ke</creator><creator>Cheng, Sirui</creator><creator>Liu, Yanjun</creator><creator>Sun, Shizhuo</creator><general>Springer US</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8296-8039</orcidid><orcidid>https://orcid.org/0000-0003-3766-2203</orcidid></search><sort><creationdate>20211001</creationdate><title>Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language</title><author>Wang, Fei ; Li, Chen ; Zeng, Zhen ; Xu, Ke ; Cheng, Sirui ; Liu, Yanjun ; Sun, Shizhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a5649021b7c3ab163037bec323ea00db25276f37ae2b8851fc11bcc7e1039c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Norms</topic><topic>Object recognition</topic><topic>Processes</topic><topic>Science &amp; Technology</topic><topic>Sign language</topic><topic>Technology</topic><topic>Training</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zeng, Zhen</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Cheng, Sirui</creatorcontrib><creatorcontrib>Liu, Yanjun</creatorcontrib><creatorcontrib>Sun, Shizhuo</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Li, Chen</au><au>Zeng, Zhen</au><au>Xu, Ke</au><au>Cheng, Sirui</au><au>Liu, Yanjun</au><au>Sun, Shizhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><stitle>APPL INTELL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>51</volume><issue>10</issue><spage>7139</spage><epage>7150</epage><pages>7139-7150</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>StandardChinese natural sign language (CNSL) contains over 8,000 words. We consider dividing the task of CNSL recognition into multiple subtasks. Few-shot learning on subtasks can achieve minimal acquisition cost and short-term training. However, the existing few-shot learning methods do not take into account the impact of ill-conditioned support samples, so we propose a new metric-based model, Cornerstone Network (CN), to complete the subtasks. CN is mainly composed of feature extractor (optional), embedding network and cornerstone generator. The cornerstone generator is designed as a semi-supervised clusterer. Compared with other metric-based few-shot models, CN without feature extractor improves 5-shot accuracy on Omniglot and miniImageNet. In order to verify the feasibility of our model on the task of CNSL recognition, we expanded the Chinese Natural Sign Language database, from CNSL-80 to CNSL-139, which integrates surface electromyography and inertial signals. The 5-shot accuracy on CNSL-139 increases from 65.25% to 68.83% comparing with the state-of-art model. After connecting with the 1-D convolution feature extractor using Siamese Network’s idea for secondary training, the accuracy increases by 10.38%. During the online test, the feature vector norms are used for selective matching. Although the accuracy drops, it is still at least 5% higher than that without feature extractor. Experimental results confirm the effectiveness of our model on 2-D images and 1-D time-series signals and the improvement of real-time recognition by SM.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-020-02170-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8296-8039</orcidid><orcidid>https://orcid.org/0000-0003-3766-2203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2021-10, Vol.51 (10), p.7139-7150
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2569112669
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Computer Science
Computer Science, Artificial Intelligence
Feature extraction
Learning
Machines
Manufacturing
Mechanical Engineering
Norms
Object recognition
Processes
Science & Technology
Sign language
Technology
Training
Two dimensional models
title Cornerstone network with feature extractor: a metric-based few-shot model for chinese natural sign language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cornerstone%20network%20with%20feature%20extractor:%20a%20metric-based%20few-shot%20model%20for%20chinese%20natural%20sign%20language&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wang,%20Fei&rft.date=2021-10-01&rft.volume=51&rft.issue=10&rft.spage=7139&rft.epage=7150&rft.pages=7139-7150&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-020-02170-9&rft_dat=%3Cproquest_webof%3E2569112669%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569112669&rft_id=info:pmid/&rfr_iscdi=true