Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network
This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2020-01, Vol.1453 (1), p.12108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12108 |
container_title | Journal of physics. Conference series |
container_volume | 1453 |
creator | Zhenyu, LI Wanguo, Wang Tao, LI Guangxiu, LIU Zengwei, LI Yuan, Tian |
description | This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized. |
doi_str_mv | 10.1088/1742-6596/1453/1/012108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569102191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569102191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tE36KNX1wqKC-hzSJlm7221q0yr996ZUVgTBecmE852Z4QBwitEFRpyHmEUkSOI0CXEU0xCHCBMv7IHZTtnf9ZwfgiPn1ghRX2wGNlfa6KKDqpSr2rrSwU4Xb7Wt7GqA1sBuaMpCVrCw28bWuu4ctDXsWlm7belc6T9VWWuYS6fVKC36qhpgZusPW_Wd1735QXeftt0cgwMjK6dPvt85eF1cv2S3wfLx5i67XAYFJZwHmOdxQqiShUJRkTCWG84p4ipFiCHMmPHXy9QkhBGeKp5TRVHE8oSgKGY4onNwNs1tWvvea9eJte1bf4gTJE5SjAhOsafYRBWtda7VRjRtuZXtIDASY7JizEyM-YkxWYHFlKx3nk_O0jY_o--fsuffoGiU8TD9A_5vxReNU4hu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569102191</pqid></control><display><type>article</type><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</creator><creatorcontrib>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</creatorcontrib><description>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1453/1/012108</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Clustering ; Deformation effects ; Diagnosis ; Formability ; Neural networks ; Physics ; Transmission lines ; Vibration isolators</subject><ispartof>Journal of physics. Conference series, 2020-01, Vol.1453 (1), p.12108</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</citedby><cites>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1453/1/012108/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Zhenyu, LI</creatorcontrib><creatorcontrib>Wanguo, Wang</creatorcontrib><creatorcontrib>Tao, LI</creatorcontrib><creatorcontrib>Guangxiu, LIU</creatorcontrib><creatorcontrib>Zengwei, LI</creatorcontrib><creatorcontrib>Yuan, Tian</creatorcontrib><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Deformation effects</subject><subject>Diagnosis</subject><subject>Formability</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Transmission lines</subject><subject>Vibration isolators</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tE36KNX1wqKC-hzSJlm7221q0yr996ZUVgTBecmE852Z4QBwitEFRpyHmEUkSOI0CXEU0xCHCBMv7IHZTtnf9ZwfgiPn1ghRX2wGNlfa6KKDqpSr2rrSwU4Xb7Wt7GqA1sBuaMpCVrCw28bWuu4ctDXsWlm7belc6T9VWWuYS6fVKC36qhpgZusPW_Wd1735QXeftt0cgwMjK6dPvt85eF1cv2S3wfLx5i67XAYFJZwHmOdxQqiShUJRkTCWG84p4ipFiCHMmPHXy9QkhBGeKp5TRVHE8oSgKGY4onNwNs1tWvvea9eJte1bf4gTJE5SjAhOsafYRBWtda7VRjRtuZXtIDASY7JizEyM-YkxWYHFlKx3nk_O0jY_o--fsuffoGiU8TD9A_5vxReNU4hu</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhenyu, LI</creator><creator>Wanguo, Wang</creator><creator>Tao, LI</creator><creator>Guangxiu, LIU</creator><creator>Zengwei, LI</creator><creator>Yuan, Tian</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><author>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Deformation effects</topic><topic>Diagnosis</topic><topic>Formability</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Transmission lines</topic><topic>Vibration isolators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhenyu, LI</creatorcontrib><creatorcontrib>Wanguo, Wang</creatorcontrib><creatorcontrib>Tao, LI</creatorcontrib><creatorcontrib>Guangxiu, LIU</creatorcontrib><creatorcontrib>Zengwei, LI</creatorcontrib><creatorcontrib>Yuan, Tian</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhenyu, LI</au><au>Wanguo, Wang</au><au>Tao, LI</au><au>Guangxiu, LIU</au><au>Zengwei, LI</au><au>Yuan, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>1453</volume><issue>1</issue><spage>12108</spage><pages>12108-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1453/1/012108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2020-01, Vol.1453 (1), p.12108 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2569102191 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial neural networks Clustering Deformation effects Diagnosis Formability Neural networks Physics Transmission lines Vibration isolators |
title | Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20diagnosis%20technology%20of%20typical%20components%20on%20transmission%20line%20based%20on%20Fully%20Convolutional%20Network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhenyu,%20LI&rft.date=2020-01-01&rft.volume=1453&rft.issue=1&rft.spage=12108&rft.pages=12108-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1453/1/012108&rft_dat=%3Cproquest_cross%3E2569102191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569102191&rft_id=info:pmid/&rfr_iscdi=true |