Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network

This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-01, Vol.1453 (1), p.12108
Hauptverfasser: Zhenyu, LI, Wanguo, Wang, Tao, LI, Guangxiu, LIU, Zengwei, LI, Yuan, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12108
container_title Journal of physics. Conference series
container_volume 1453
creator Zhenyu, LI
Wanguo, Wang
Tao, LI
Guangxiu, LIU
Zengwei, LI
Yuan, Tian
description This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.
doi_str_mv 10.1088/1742-6596/1453/1/012108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569102191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569102191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tE36KNX1wqKC-hzSJlm7221q0yr996ZUVgTBecmE852Z4QBwitEFRpyHmEUkSOI0CXEU0xCHCBMv7IHZTtnf9ZwfgiPn1ghRX2wGNlfa6KKDqpSr2rrSwU4Xb7Wt7GqA1sBuaMpCVrCw28bWuu4ctDXsWlm7belc6T9VWWuYS6fVKC36qhpgZusPW_Wd1735QXeftt0cgwMjK6dPvt85eF1cv2S3wfLx5i67XAYFJZwHmOdxQqiShUJRkTCWG84p4ipFiCHMmPHXy9QkhBGeKp5TRVHE8oSgKGY4onNwNs1tWvvea9eJte1bf4gTJE5SjAhOsafYRBWtda7VRjRtuZXtIDASY7JizEyM-YkxWYHFlKx3nk_O0jY_o--fsuffoGiU8TD9A_5vxReNU4hu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569102191</pqid></control><display><type>article</type><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</creator><creatorcontrib>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</creatorcontrib><description>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1453/1/012108</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Clustering ; Deformation effects ; Diagnosis ; Formability ; Neural networks ; Physics ; Transmission lines ; Vibration isolators</subject><ispartof>Journal of physics. Conference series, 2020-01, Vol.1453 (1), p.12108</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</citedby><cites>FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1453/1/012108/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Zhenyu, LI</creatorcontrib><creatorcontrib>Wanguo, Wang</creatorcontrib><creatorcontrib>Tao, LI</creatorcontrib><creatorcontrib>Guangxiu, LIU</creatorcontrib><creatorcontrib>Zengwei, LI</creatorcontrib><creatorcontrib>Yuan, Tian</creatorcontrib><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Deformation effects</subject><subject>Diagnosis</subject><subject>Formability</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Transmission lines</subject><subject>Vibration isolators</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tE36KNX1wqKC-hzSJlm7221q0yr996ZUVgTBecmE852Z4QBwitEFRpyHmEUkSOI0CXEU0xCHCBMv7IHZTtnf9ZwfgiPn1ghRX2wGNlfa6KKDqpSr2rrSwU4Xb7Wt7GqA1sBuaMpCVrCw28bWuu4ctDXsWlm7belc6T9VWWuYS6fVKC36qhpgZusPW_Wd1735QXeftt0cgwMjK6dPvt85eF1cv2S3wfLx5i67XAYFJZwHmOdxQqiShUJRkTCWG84p4ipFiCHMmPHXy9QkhBGeKp5TRVHE8oSgKGY4onNwNs1tWvvea9eJte1bf4gTJE5SjAhOsafYRBWtda7VRjRtuZXtIDASY7JizEyM-YkxWYHFlKx3nk_O0jY_o--fsuffoGiU8TD9A_5vxReNU4hu</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhenyu, LI</creator><creator>Wanguo, Wang</creator><creator>Tao, LI</creator><creator>Guangxiu, LIU</creator><creator>Zengwei, LI</creator><creator>Yuan, Tian</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</title><author>Zhenyu, LI ; Wanguo, Wang ; Tao, LI ; Guangxiu, LIU ; Zengwei, LI ; Yuan, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3288-18b5623dacd04c677bf88308d90070177f003a9f627289d8b3d3047b620457143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Deformation effects</topic><topic>Diagnosis</topic><topic>Formability</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Transmission lines</topic><topic>Vibration isolators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhenyu, LI</creatorcontrib><creatorcontrib>Wanguo, Wang</creatorcontrib><creatorcontrib>Tao, LI</creatorcontrib><creatorcontrib>Guangxiu, LIU</creatorcontrib><creatorcontrib>Zengwei, LI</creatorcontrib><creatorcontrib>Yuan, Tian</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhenyu, LI</au><au>Wanguo, Wang</au><au>Tao, LI</au><au>Guangxiu, LIU</au><au>Zengwei, LI</au><au>Yuan, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>1453</volume><issue>1</issue><spage>12108</spage><pages>12108-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper presents an intelligent defect diagnosis algorithm based on fully convolutional neural network for typical transmission line components. Based on the region-based fully convolutional neural network algorithm and combined with deformable convolution, feature context fusion, clustering, the feature expression ability of neural network is improved. Through the improvement, the algorithm adapts to the object deformation and scale difference. In addition, the training effect is improved by improving the sample labeling strategy. In this paper, the defect diagnosis of four kinds of transmission line components(insulator, vibration damper, grading ring, wire clamp) is realized.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1453/1/012108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-01, Vol.1453 (1), p.12108
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2569102191
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Artificial neural networks
Clustering
Deformation effects
Diagnosis
Formability
Neural networks
Physics
Transmission lines
Vibration isolators
title Defect diagnosis technology of typical components on transmission line based on Fully Convolutional Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20diagnosis%20technology%20of%20typical%20components%20on%20transmission%20line%20based%20on%20Fully%20Convolutional%20Network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhenyu,%20LI&rft.date=2020-01-01&rft.volume=1453&rft.issue=1&rft.spage=12108&rft.pages=12108-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1453/1/012108&rft_dat=%3Cproquest_cross%3E2569102191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569102191&rft_id=info:pmid/&rfr_iscdi=true