A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data
Based on the Penn's experimental data, a consistently compressible Mooney‐Rivlin model is developed for the vulcanized rubber. First, the Penn's experimental data are re‐analyzed, which show the near incompressibility. Next, the incompressible Mooney‐Rivlin model and three conventional typ...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2021-09, Vol.61 (9), p.2287-2294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2294 |
---|---|
container_issue | 9 |
container_start_page | 2287 |
container_title | Polymer engineering and science |
container_volume | 61 |
creator | Peng, Xiangfeng Han, Lei Li, Luxian |
description | Based on the Penn's experimental data, a consistently compressible Mooney‐Rivlin model is developed for the vulcanized rubber. First, the Penn's experimental data are re‐analyzed, which show the near incompressibility. Next, the incompressible Mooney‐Rivlin model and three conventional types of compressible model are studied for the vulcanized rubber, which exhibit an apparent inconsistence with the incompressible model due to the dissimilar initial shear modulus. Finally, a consistently compressible model with extra constants is proposed, which obeys the normalization conditions and the consistent conditions, and a procedure to identify model constants is suggested, and then applied to the Penn's experimental data. The consistently compressible Mooney model is eventually established for the vulcanized rubber, and then compared with other four hyper‐elastic models. |
doi_str_mv | 10.1002/pen.25757 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2569097819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678289877</galeid><sourcerecordid>A678289877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-2401629dfc44f67ece61476a2aeb52d269e97fb5a08e15d4215bc29209c39bba3</originalsourceid><addsrcrecordid>eNp1ktFuFCEUhonRxLV64RuQeGFMnC3DDMNwuWla26RqU_WaAHNmSzMDU2Bq16s-gs_ok0i7JrrJGi7Ige__D-H8CL0uybIkhB5O4JaUccafoEXJ6ragTVU_RQtCKlpUbds-Ry9ivCaZrZhYoJsVNt5FGxO4NGxyMU4BYrR6APzRewebX_c_L-3tYB0efQcD7n3A6Qrw7TwY5ewP6HCYtYaAtYq58O7x-gKcexsx3E0Q7Jjd1YA7ldRL9KxXQ4RXf_YD9O3k-OvRaXH--cPZ0eq8MDWveEFrUjZUdL2p677hYKApa94oqkAz2tFGgOC9Zoq0ULKupiXThgpKhKmE1qo6QG-2vlPwNzPEJK_9HFxuKSlrBBG8LcVfaq0GkNb1PgVlRhuNXDW8pa1oOc9UsYdag4OghvxHvc3HO_xyD59XB6M1ewXvdgSZSXCX1mqOUZ59udxl3__D6jla9zCwPMT1VYpbyT5rE3yMAXo55XmosJElkQ-ZkTkz8jEzmT3cst_z-zb_B-XF8aet4jc9AcJZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569097819</pqid></control><display><type>article</type><title>A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Peng, Xiangfeng ; Han, Lei ; Li, Luxian</creator><creatorcontrib>Peng, Xiangfeng ; Han, Lei ; Li, Luxian</creatorcontrib><description>Based on the Penn's experimental data, a consistently compressible Mooney‐Rivlin model is developed for the vulcanized rubber. First, the Penn's experimental data are re‐analyzed, which show the near incompressibility. Next, the incompressible Mooney‐Rivlin model and three conventional types of compressible model are studied for the vulcanized rubber, which exhibit an apparent inconsistence with the incompressible model due to the dissimilar initial shear modulus. Finally, a consistently compressible model with extra constants is proposed, which obeys the normalization conditions and the consistent conditions, and a procedure to identify model constants is suggested, and then applied to the Penn's experimental data. The consistently compressible Mooney model is eventually established for the vulcanized rubber, and then compared with other four hyper‐elastic models.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25757</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analysis ; Compressibility ; compressible Mooney‐Rivlin model ; Computational fluid dynamics ; consistent condition ; Incompressibility ; incompressible Mooney‐Rivlin model ; Mechanical properties ; normalization condition ; Rubber ; Shear modulus ; Synthetic products</subject><ispartof>Polymer engineering and science, 2021-09, Vol.61 (9), p.2287-2294</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>2021 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-2401629dfc44f67ece61476a2aeb52d269e97fb5a08e15d4215bc29209c39bba3</citedby><cites>FETCH-LOGICAL-c4737-2401629dfc44f67ece61476a2aeb52d269e97fb5a08e15d4215bc29209c39bba3</cites><orcidid>0000-0002-5394-692X ; 0000-0002-5028-0114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Peng, Xiangfeng</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Li, Luxian</creatorcontrib><title>A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data</title><title>Polymer engineering and science</title><description>Based on the Penn's experimental data, a consistently compressible Mooney‐Rivlin model is developed for the vulcanized rubber. First, the Penn's experimental data are re‐analyzed, which show the near incompressibility. Next, the incompressible Mooney‐Rivlin model and three conventional types of compressible model are studied for the vulcanized rubber, which exhibit an apparent inconsistence with the incompressible model due to the dissimilar initial shear modulus. Finally, a consistently compressible model with extra constants is proposed, which obeys the normalization conditions and the consistent conditions, and a procedure to identify model constants is suggested, and then applied to the Penn's experimental data. The consistently compressible Mooney model is eventually established for the vulcanized rubber, and then compared with other four hyper‐elastic models.</description><subject>Analysis</subject><subject>Compressibility</subject><subject>compressible Mooney‐Rivlin model</subject><subject>Computational fluid dynamics</subject><subject>consistent condition</subject><subject>Incompressibility</subject><subject>incompressible Mooney‐Rivlin model</subject><subject>Mechanical properties</subject><subject>normalization condition</subject><subject>Rubber</subject><subject>Shear modulus</subject><subject>Synthetic products</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1ktFuFCEUhonRxLV64RuQeGFMnC3DDMNwuWla26RqU_WaAHNmSzMDU2Bq16s-gs_ok0i7JrrJGi7Ige__D-H8CL0uybIkhB5O4JaUccafoEXJ6ragTVU_RQtCKlpUbds-Ry9ivCaZrZhYoJsVNt5FGxO4NGxyMU4BYrR6APzRewebX_c_L-3tYB0efQcD7n3A6Qrw7TwY5ewP6HCYtYaAtYq58O7x-gKcexsx3E0Q7Jjd1YA7ldRL9KxXQ4RXf_YD9O3k-OvRaXH--cPZ0eq8MDWveEFrUjZUdL2p677hYKApa94oqkAz2tFGgOC9Zoq0ULKupiXThgpKhKmE1qo6QG-2vlPwNzPEJK_9HFxuKSlrBBG8LcVfaq0GkNb1PgVlRhuNXDW8pa1oOc9UsYdag4OghvxHvc3HO_xyD59XB6M1ewXvdgSZSXCX1mqOUZ59udxl3__D6jla9zCwPMT1VYpbyT5rE3yMAXo55XmosJElkQ-ZkTkz8jEzmT3cst_z-zb_B-XF8aet4jc9AcJZ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Peng, Xiangfeng</creator><creator>Han, Lei</creator><creator>Li, Luxian</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5394-692X</orcidid><orcidid>https://orcid.org/0000-0002-5028-0114</orcidid></search><sort><creationdate>202109</creationdate><title>A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data</title><author>Peng, Xiangfeng ; Han, Lei ; Li, Luxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-2401629dfc44f67ece61476a2aeb52d269e97fb5a08e15d4215bc29209c39bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Compressibility</topic><topic>compressible Mooney‐Rivlin model</topic><topic>Computational fluid dynamics</topic><topic>consistent condition</topic><topic>Incompressibility</topic><topic>incompressible Mooney‐Rivlin model</topic><topic>Mechanical properties</topic><topic>normalization condition</topic><topic>Rubber</topic><topic>Shear modulus</topic><topic>Synthetic products</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xiangfeng</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><creatorcontrib>Li, Luxian</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xiangfeng</au><au>Han, Lei</au><au>Li, Luxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-09</date><risdate>2021</risdate><volume>61</volume><issue>9</issue><spage>2287</spage><epage>2294</epage><pages>2287-2294</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Based on the Penn's experimental data, a consistently compressible Mooney‐Rivlin model is developed for the vulcanized rubber. First, the Penn's experimental data are re‐analyzed, which show the near incompressibility. Next, the incompressible Mooney‐Rivlin model and three conventional types of compressible model are studied for the vulcanized rubber, which exhibit an apparent inconsistence with the incompressible model due to the dissimilar initial shear modulus. Finally, a consistently compressible model with extra constants is proposed, which obeys the normalization conditions and the consistent conditions, and a procedure to identify model constants is suggested, and then applied to the Penn's experimental data. The consistently compressible Mooney model is eventually established for the vulcanized rubber, and then compared with other four hyper‐elastic models.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25757</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5394-692X</orcidid><orcidid>https://orcid.org/0000-0002-5028-0114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2021-09, Vol.61 (9), p.2287-2294 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2569097819 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis Compressibility compressible Mooney‐Rivlin model Computational fluid dynamics consistent condition Incompressibility incompressible Mooney‐Rivlin model Mechanical properties normalization condition Rubber Shear modulus Synthetic products |
title | A consistently compressible Mooney‐Rivlin model for the vulcanized rubber based on the Penn's experimental data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consistently%20compressible%20Mooney%E2%80%90Rivlin%20model%20for%20the%20vulcanized%20rubber%20based%20on%20the%20Penn's%20experimental%20data&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Peng,%20Xiangfeng&rft.date=2021-09&rft.volume=61&rft.issue=9&rft.spage=2287&rft.epage=2294&rft.pages=2287-2294&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25757&rft_dat=%3Cgale_proqu%3EA678289877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569097819&rft_id=info:pmid/&rft_galeid=A678289877&rfr_iscdi=true |