Galois coinvariants of the unramified Iwasawa modules of multiple Zp-extensions
For a CM-field K and an odd prime number p , let K ~ ′ be a certain multiple Z p -extension of K . In this paper, we study several basic properties of the unramified Iwasawa module X K ~ ′ of K ~ ′ as a Z p 〚 Gal ( K ~ ′ / K ) 〛 -module. Our first main result is a description of the order of a Galoi...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2021, Vol.45 (2), p.407-431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a CM-field
K
and an odd prime number
p
, let
K
~
′
be a certain multiple
Z
p
-extension of
K
. In this paper, we study several basic properties of the unramified Iwasawa module
X
K
~
′
of
K
~
′
as a
Z
p
〚
Gal
(
K
~
′
/
K
)
〛
-module. Our first main result is a description of the order of a Galois coinvariant of
X
K
~
′
in terms of the characteristic power series of the unramified Iwasawa module of the cyclotomic
Z
p
-extension of
K
under a certain assumption on the splitting of primes above
p
. The second result is that if
K
is an imaginary quadratic field and if
p
does not split in
K
, then, under several assumptions on the Iwasawa
λ
-invariant and the ideal class group of
K
, we determine a necessary and sufficient condition such that
X
K
~
is
Z
p
〚
Gal
(
K
~
/
K
)
〛
-cyclic. Here,
K
~
is the
Z
p
2
-extension of
K
. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-020-00150-6 |