Galois coinvariants of the unramified Iwasawa modules of multiple Zp-extensions

For a CM-field K and an odd prime number p , let K ~ ′ be a certain multiple Z p -extension of K . In this paper, we study several basic properties of the unramified Iwasawa module X K ~ ′ of K ~ ′ as a Z p 〚 Gal ( K ~ ′ / K ) 〛 -module. Our first main result is a description of the order of a Galoi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2021, Vol.45 (2), p.407-431
Hauptverfasser: Miura, Takashi, Murakami, Kazuaki, Okano, Keiji, Otsuki, Rei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a CM-field K and an odd prime number p , let K ~ ′ be a certain multiple Z p -extension of K . In this paper, we study several basic properties of the unramified Iwasawa module X K ~ ′ of K ~ ′ as a Z p 〚 Gal ( K ~ ′ / K ) 〛 -module. Our first main result is a description of the order of a Galois coinvariant of X K ~ ′ in terms of the characteristic power series of the unramified Iwasawa module of the cyclotomic Z p -extension of K under a certain assumption on the splitting of primes above p . The second result is that if K is an imaginary quadratic field and if p does not split in K , then, under several assumptions on the Iwasawa λ -invariant and the ideal class group of K , we determine a necessary and sufficient condition such that X K ~ is Z p 〚 Gal ( K ~ / K ) 〛 -cyclic. Here, K ~ is the Z p 2 -extension of K .
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-020-00150-6