Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina

Despite its location in the “Arid Diagonal” of South America, the Valle de Iglesia contains a number of artesian springs, the most important of which are the Baños Pismanta thermal springs, which release water at ~ 45 °C. Despite the scarcity of water resources in the Valle de Iglesia, there have be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of earth sciences : Geologische Rundschau 2021-10, Vol.110 (7), p.2559-2571
Hauptverfasser: Hinzer, Ilka, Altherr, Manuel, Christiansen, Rodolfo, Schreuer, Jürgen, Wohnlich, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2571
container_issue 7
container_start_page 2559
container_title International journal of earth sciences : Geologische Rundschau
container_volume 110
creator Hinzer, Ilka
Altherr, Manuel
Christiansen, Rodolfo
Schreuer, Jürgen
Wohnlich, Stefan
description Despite its location in the “Arid Diagonal” of South America, the Valle de Iglesia contains a number of artesian springs, the most important of which are the Baños Pismanta thermal springs, which release water at ~ 45 °C. Despite the scarcity of water resources in the Valle de Iglesia, there have been few attempts to study these springs in any detail. In this study, > 50 springs are described, each characterised by small volcano-like mud structures up to 15 m tall. Hydrogeological and hydrochemical analyses of the groundwater system in the Valle de Iglesia were performed to improve our understanding of the subsurface water flow and of the connections between the subsurface water and the associated systems of faults and springs. Site measurements were made, and the concentrations of the main ions and trace elements were also determined by laboratory analysis of water samples. The samples obtained from the spring were rich in Na–HCO 3 –SO 4 and Na–SO 4 –HCO 3 , but the surface water samples from the Agua Negra River were rich in Ca–SO 4 –HCO 3 . The temperature of the springs was in the range 20–45 °C. Both the temperatures and the ionic ratios are compatible with the presence of a deep hydraulic circulation system. The oxidation of sulphide minerals nearby the magmatic rocks and volcanic edifices causes the mobilisation of arsenic, which accumulates in the groundwater due to the low annual rainfall. The concentrations of arsenic in the spring water samples were therefore higher than the current limit set by the World Health Organisation, meaning that the water is not suitable for human consumption.
doi_str_mv 10.1007/s00531-021-02058-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2569063266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569063266</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-fab4c139ca7839495642d9c550b844a7f716fba37d4775695106b0d0ddf29f533</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hxYx6_kWFU8KlXiAlwtJ7bTVKlTbFeo_x6H8LhxWO1q9M2sNFl2jeEWA4i7AMAIzqEYB1iZw0k2w5SInBS8OP29GT3PLkLYAowCnmX9cqO8aqLxXVCxGxwaLFIOKR9N6NLR-uHg9IdKBArHEM0OdQ7FjUFvqu8N0gat2n5kf_SlcdGrHi2cNmGMW_g2SZ1Tl9mZVX0wV997nr0-3L8sn_L18-NquVjnipQ85lbVtMGkapQoSUUrxmmhq4YxqEtKlbACc1srIjQVgvGKYeA1aNDaFpVlhMyzmyl374f3gwlRboeDd-mlLBIPPJXCE1VMVOOHELyxcu-7nfJHiUGOrcqpVZlalV-tSkgmMplCgl1r_F_0P65PSUJ59w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569063266</pqid></control><display><type>article</type><title>Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina</title><source>Springer Nature - Complete Springer Journals</source><creator>Hinzer, Ilka ; Altherr, Manuel ; Christiansen, Rodolfo ; Schreuer, Jürgen ; Wohnlich, Stefan</creator><creatorcontrib>Hinzer, Ilka ; Altherr, Manuel ; Christiansen, Rodolfo ; Schreuer, Jürgen ; Wohnlich, Stefan</creatorcontrib><description>Despite its location in the “Arid Diagonal” of South America, the Valle de Iglesia contains a number of artesian springs, the most important of which are the Baños Pismanta thermal springs, which release water at ~ 45 °C. Despite the scarcity of water resources in the Valle de Iglesia, there have been few attempts to study these springs in any detail. In this study, &gt; 50 springs are described, each characterised by small volcano-like mud structures up to 15 m tall. Hydrogeological and hydrochemical analyses of the groundwater system in the Valle de Iglesia were performed to improve our understanding of the subsurface water flow and of the connections between the subsurface water and the associated systems of faults and springs. Site measurements were made, and the concentrations of the main ions and trace elements were also determined by laboratory analysis of water samples. The samples obtained from the spring were rich in Na–HCO 3 –SO 4 and Na–SO 4 –HCO 3 , but the surface water samples from the Agua Negra River were rich in Ca–SO 4 –HCO 3 . The temperature of the springs was in the range 20–45 °C. Both the temperatures and the ionic ratios are compatible with the presence of a deep hydraulic circulation system. The oxidation of sulphide minerals nearby the magmatic rocks and volcanic edifices causes the mobilisation of arsenic, which accumulates in the groundwater due to the low annual rainfall. The concentrations of arsenic in the spring water samples were therefore higher than the current limit set by the World Health Organisation, meaning that the water is not suitable for human consumption.</description><identifier>ISSN: 1437-3254</identifier><identifier>EISSN: 1437-3262</identifier><identifier>DOI: 10.1007/s00531-021-02058-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual rainfall ; Aridity ; Arsenic ; Artesian springs ; Earth and Environmental Science ; Earth Sciences ; Geochemistry ; Geology ; Geophysics/Geodesy ; Geothermal springs ; Groundwater ; Hot springs ; Hydrochemicals ; Hydrogeology ; Mineral Resources ; Minerals ; Original Paper ; Oxidation ; Rain ; Sedimentology ; Sodium ; Spring ; Spring (season) ; Spring water ; Structural Geology ; Subsurface water ; Sulfides ; Sulphates ; Sulphide minerals ; Sulphides ; Surface water ; Thermal springs ; Trace elements ; Volcanic activity ; Volcanoes ; Water analysis ; Water flow ; Water resources ; Water sampling ; Water scarcity ; Water springs</subject><ispartof>International journal of earth sciences : Geologische Rundschau, 2021-10, Vol.110 (7), p.2559-2571</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-fab4c139ca7839495642d9c550b844a7f716fba37d4775695106b0d0ddf29f533</citedby><cites>FETCH-LOGICAL-a386t-fab4c139ca7839495642d9c550b844a7f716fba37d4775695106b0d0ddf29f533</cites><orcidid>0000-0002-5808-3430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00531-021-02058-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00531-021-02058-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Hinzer, Ilka</creatorcontrib><creatorcontrib>Altherr, Manuel</creatorcontrib><creatorcontrib>Christiansen, Rodolfo</creatorcontrib><creatorcontrib>Schreuer, Jürgen</creatorcontrib><creatorcontrib>Wohnlich, Stefan</creatorcontrib><title>Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina</title><title>International journal of earth sciences : Geologische Rundschau</title><addtitle>Int J Earth Sci (Geol Rundsch)</addtitle><description>Despite its location in the “Arid Diagonal” of South America, the Valle de Iglesia contains a number of artesian springs, the most important of which are the Baños Pismanta thermal springs, which release water at ~ 45 °C. Despite the scarcity of water resources in the Valle de Iglesia, there have been few attempts to study these springs in any detail. In this study, &gt; 50 springs are described, each characterised by small volcano-like mud structures up to 15 m tall. Hydrogeological and hydrochemical analyses of the groundwater system in the Valle de Iglesia were performed to improve our understanding of the subsurface water flow and of the connections between the subsurface water and the associated systems of faults and springs. Site measurements were made, and the concentrations of the main ions and trace elements were also determined by laboratory analysis of water samples. The samples obtained from the spring were rich in Na–HCO 3 –SO 4 and Na–SO 4 –HCO 3 , but the surface water samples from the Agua Negra River were rich in Ca–SO 4 –HCO 3 . The temperature of the springs was in the range 20–45 °C. Both the temperatures and the ionic ratios are compatible with the presence of a deep hydraulic circulation system. The oxidation of sulphide minerals nearby the magmatic rocks and volcanic edifices causes the mobilisation of arsenic, which accumulates in the groundwater due to the low annual rainfall. The concentrations of arsenic in the spring water samples were therefore higher than the current limit set by the World Health Organisation, meaning that the water is not suitable for human consumption.</description><subject>Annual rainfall</subject><subject>Aridity</subject><subject>Arsenic</subject><subject>Artesian springs</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geothermal springs</subject><subject>Groundwater</subject><subject>Hot springs</subject><subject>Hydrochemicals</subject><subject>Hydrogeology</subject><subject>Mineral Resources</subject><subject>Minerals</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Rain</subject><subject>Sedimentology</subject><subject>Sodium</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Spring water</subject><subject>Structural Geology</subject><subject>Subsurface water</subject><subject>Sulfides</subject><subject>Sulphates</subject><subject>Sulphide minerals</subject><subject>Sulphides</subject><subject>Surface water</subject><subject>Thermal springs</subject><subject>Trace elements</subject><subject>Volcanic activity</subject><subject>Volcanoes</subject><subject>Water analysis</subject><subject>Water flow</subject><subject>Water resources</subject><subject>Water sampling</subject><subject>Water scarcity</subject><subject>Water springs</subject><issn>1437-3254</issn><issn>1437-3262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4hxYx6_kWFU8KlXiAlwtJ7bTVKlTbFeo_x6H8LhxWO1q9M2sNFl2jeEWA4i7AMAIzqEYB1iZw0k2w5SInBS8OP29GT3PLkLYAowCnmX9cqO8aqLxXVCxGxwaLFIOKR9N6NLR-uHg9IdKBArHEM0OdQ7FjUFvqu8N0gat2n5kf_SlcdGrHi2cNmGMW_g2SZ1Tl9mZVX0wV997nr0-3L8sn_L18-NquVjnipQ85lbVtMGkapQoSUUrxmmhq4YxqEtKlbACc1srIjQVgvGKYeA1aNDaFpVlhMyzmyl374f3gwlRboeDd-mlLBIPPJXCE1VMVOOHELyxcu-7nfJHiUGOrcqpVZlalV-tSkgmMplCgl1r_F_0P65PSUJ59w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hinzer, Ilka</creator><creator>Altherr, Manuel</creator><creator>Christiansen, Rodolfo</creator><creator>Schreuer, Jürgen</creator><creator>Wohnlich, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-5808-3430</orcidid></search><sort><creationdate>20211001</creationdate><title>Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina</title><author>Hinzer, Ilka ; Altherr, Manuel ; Christiansen, Rodolfo ; Schreuer, Jürgen ; Wohnlich, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-fab4c139ca7839495642d9c550b844a7f716fba37d4775695106b0d0ddf29f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annual rainfall</topic><topic>Aridity</topic><topic>Arsenic</topic><topic>Artesian springs</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geothermal springs</topic><topic>Groundwater</topic><topic>Hot springs</topic><topic>Hydrochemicals</topic><topic>Hydrogeology</topic><topic>Mineral Resources</topic><topic>Minerals</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Rain</topic><topic>Sedimentology</topic><topic>Sodium</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Spring water</topic><topic>Structural Geology</topic><topic>Subsurface water</topic><topic>Sulfides</topic><topic>Sulphates</topic><topic>Sulphide minerals</topic><topic>Sulphides</topic><topic>Surface water</topic><topic>Thermal springs</topic><topic>Trace elements</topic><topic>Volcanic activity</topic><topic>Volcanoes</topic><topic>Water analysis</topic><topic>Water flow</topic><topic>Water resources</topic><topic>Water sampling</topic><topic>Water scarcity</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinzer, Ilka</creatorcontrib><creatorcontrib>Altherr, Manuel</creatorcontrib><creatorcontrib>Christiansen, Rodolfo</creatorcontrib><creatorcontrib>Schreuer, Jürgen</creatorcontrib><creatorcontrib>Wohnlich, Stefan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinzer, Ilka</au><au>Altherr, Manuel</au><au>Christiansen, Rodolfo</au><au>Schreuer, Jürgen</au><au>Wohnlich, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina</atitle><jtitle>International journal of earth sciences : Geologische Rundschau</jtitle><stitle>Int J Earth Sci (Geol Rundsch)</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>110</volume><issue>7</issue><spage>2559</spage><epage>2571</epage><pages>2559-2571</pages><issn>1437-3254</issn><eissn>1437-3262</eissn><abstract>Despite its location in the “Arid Diagonal” of South America, the Valle de Iglesia contains a number of artesian springs, the most important of which are the Baños Pismanta thermal springs, which release water at ~ 45 °C. Despite the scarcity of water resources in the Valle de Iglesia, there have been few attempts to study these springs in any detail. In this study, &gt; 50 springs are described, each characterised by small volcano-like mud structures up to 15 m tall. Hydrogeological and hydrochemical analyses of the groundwater system in the Valle de Iglesia were performed to improve our understanding of the subsurface water flow and of the connections between the subsurface water and the associated systems of faults and springs. Site measurements were made, and the concentrations of the main ions and trace elements were also determined by laboratory analysis of water samples. The samples obtained from the spring were rich in Na–HCO 3 –SO 4 and Na–SO 4 –HCO 3 , but the surface water samples from the Agua Negra River were rich in Ca–SO 4 –HCO 3 . The temperature of the springs was in the range 20–45 °C. Both the temperatures and the ionic ratios are compatible with the presence of a deep hydraulic circulation system. The oxidation of sulphide minerals nearby the magmatic rocks and volcanic edifices causes the mobilisation of arsenic, which accumulates in the groundwater due to the low annual rainfall. The concentrations of arsenic in the spring water samples were therefore higher than the current limit set by the World Health Organisation, meaning that the water is not suitable for human consumption.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00531-021-02058-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5808-3430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1437-3254
ispartof International journal of earth sciences : Geologische Rundschau, 2021-10, Vol.110 (7), p.2559-2571
issn 1437-3254
1437-3262
language eng
recordid cdi_proquest_journals_2569063266
source Springer Nature - Complete Springer Journals
subjects Annual rainfall
Aridity
Arsenic
Artesian springs
Earth and Environmental Science
Earth Sciences
Geochemistry
Geology
Geophysics/Geodesy
Geothermal springs
Groundwater
Hot springs
Hydrochemicals
Hydrogeology
Mineral Resources
Minerals
Original Paper
Oxidation
Rain
Sedimentology
Sodium
Spring
Spring (season)
Spring water
Structural Geology
Subsurface water
Sulfides
Sulphates
Sulphide minerals
Sulphides
Surface water
Thermal springs
Trace elements
Volcanic activity
Volcanoes
Water analysis
Water flow
Water resources
Water sampling
Water scarcity
Water springs
title Characterisation of an artesian groundwater system in the Valle de Iglesia in the Central Andes of Argentina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20an%20artesian%20groundwater%20system%20in%20the%20Valle%20de%20Iglesia%20in%20the%20Central%20Andes%20of%20Argentina&rft.jtitle=International%20journal%20of%20earth%20sciences%20:%20Geologische%20Rundschau&rft.au=Hinzer,%20Ilka&rft.date=2021-10-01&rft.volume=110&rft.issue=7&rft.spage=2559&rft.epage=2571&rft.pages=2559-2571&rft.issn=1437-3254&rft.eissn=1437-3262&rft_id=info:doi/10.1007/s00531-021-02058-0&rft_dat=%3Cproquest_cross%3E2569063266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569063266&rft_id=info:pmid/&rfr_iscdi=true