An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification
Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2021-09, Vol.25 (9), p.3554-3563 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3563 |
---|---|
container_issue | 9 |
container_start_page | 3554 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 25 |
creator | Pacheco, Andre G. C. Krohling, Renato A. |
description | Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios. |
doi_str_mv | 10.1109/JBHI.2021.3062002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2568779719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9364366</ieee_id><sourcerecordid>2494279503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxa2KqqAtH6CqhCxx6SVb_4sTH5fQwla76qHcrYkzAdPESePsgW9fR7twYC4eeX7vzUiPkC-crTln5vuvm_vtWjDB15JpwZj4QC4E12UmBCvPXntu1Dm5jPGZpSrTl9GfyLmUWuYlYxfkZRPoZp4xzH4I2Q1EbOge3RMEH3s6D7Qa-toHpNseHjFSCMt8hgZmoD7QW8SR7hCm4MMj3Q8NdpFuxrHzySjJ__xNUAXB4USrDmL0rXewLPtMPrbQRbw8vSvy8PPHQ3Wf7X7fbavNLnPSFHPG65qBYty0dTqZY8FUy3IHABp42RStMSJ3GoVxRja5KuuSt0oxaE0hdS5X5NvRdpyGfweMs-19dNh1EHA4RCuUUaIwOZMJvX6HPg-HKaTjrMh1WRSm4CZR_Ei5aYhxwtaOk-9herGc2SUZuyRjl2TsKZmkuTo5H-oemzfFaw4J-HoEPCK-jY3USmot_wOfd5A4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568779719</pqid></control><display><type>article</type><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Pacheco, Andre G. C. ; Krohling, Renato A.</creator><creatorcontrib>Pacheco, Andre G. C. ; Krohling, Renato A.</creatorcontrib><description>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3062002</identifier><identifier>PMID: 33635800</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cancer ; Classification ; Classification systems ; Convolutional neural networks ; data aggregation ; Data mining ; Deep learning ; Demography ; Feature extraction ; Image classification ; Image enhancement ; Lesions ; Logic gates ; Machine learning ; Metadata ; Neural networks ; Skin ; Skin cancer ; skin cancer classification ; Skin diseases ; Skin lesions</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3554-3563</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</citedby><cites>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</cites><orcidid>0000-0001-8861-4274 ; 0000-0003-0117-9308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9364366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9364366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacheco, Andre G. C.</creatorcontrib><creatorcontrib>Krohling, Renato A.</creatorcontrib><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classification systems</subject><subject>Convolutional neural networks</subject><subject>data aggregation</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Demography</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Lesions</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Metadata</subject><subject>Neural networks</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin cancer classification</subject><subject>Skin diseases</subject><subject>Skin lesions</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9P3DAQxa2KqqAtH6CqhCxx6SVb_4sTH5fQwla76qHcrYkzAdPESePsgW9fR7twYC4eeX7vzUiPkC-crTln5vuvm_vtWjDB15JpwZj4QC4E12UmBCvPXntu1Dm5jPGZpSrTl9GfyLmUWuYlYxfkZRPoZp4xzH4I2Q1EbOge3RMEH3s6D7Qa-toHpNseHjFSCMt8hgZmoD7QW8SR7hCm4MMj3Q8NdpFuxrHzySjJ__xNUAXB4USrDmL0rXewLPtMPrbQRbw8vSvy8PPHQ3Wf7X7fbavNLnPSFHPG65qBYty0dTqZY8FUy3IHABp42RStMSJ3GoVxRja5KuuSt0oxaE0hdS5X5NvRdpyGfweMs-19dNh1EHA4RCuUUaIwOZMJvX6HPg-HKaTjrMh1WRSm4CZR_Ei5aYhxwtaOk-9herGc2SUZuyRjl2TsKZmkuTo5H-oemzfFaw4J-HoEPCK-jY3USmot_wOfd5A4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pacheco, Andre G. C.</creator><creator>Krohling, Renato A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8861-4274</orcidid><orcidid>https://orcid.org/0000-0003-0117-9308</orcidid></search><sort><creationdate>20210901</creationdate><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><author>Pacheco, Andre G. C. ; Krohling, Renato A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classification systems</topic><topic>Convolutional neural networks</topic><topic>data aggregation</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Demography</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Lesions</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Metadata</topic><topic>Neural networks</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin cancer classification</topic><topic>Skin diseases</topic><topic>Skin lesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco, Andre G. C.</creatorcontrib><creatorcontrib>Krohling, Renato A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacheco, Andre G. C.</au><au>Krohling, Renato A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>25</volume><issue>9</issue><spage>3554</spage><epage>3563</epage><pages>3554-3563</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33635800</pmid><doi>10.1109/JBHI.2021.3062002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8861-4274</orcidid><orcidid>https://orcid.org/0000-0003-0117-9308</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3554-3563 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2568779719 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Cancer Classification Classification systems Convolutional neural networks data aggregation Data mining Deep learning Demography Feature extraction Image classification Image enhancement Lesions Logic gates Machine learning Metadata Neural networks Skin Skin cancer skin cancer classification Skin diseases Skin lesions |
title | An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Attention-Based%20Mechanism%20to%20Combine%20Images%20and%20Metadata%20in%20Deep%20Learning%20Models%20Applied%20to%20Skin%20Cancer%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Pacheco,%20Andre%20G.%20C.&rft.date=2021-09-01&rft.volume=25&rft.issue=9&rft.spage=3554&rft.epage=3563&rft.pages=3554-3563&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3062002&rft_dat=%3Cproquest_RIE%3E2494279503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568779719&rft_id=info:pmid/33635800&rft_ieee_id=9364366&rfr_iscdi=true |