An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification

Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2021-09, Vol.25 (9), p.3554-3563
Hauptverfasser: Pacheco, Andre G. C., Krohling, Renato A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3563
container_issue 9
container_start_page 3554
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Pacheco, Andre G. C.
Krohling, Renato A.
description Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.
doi_str_mv 10.1109/JBHI.2021.3062002
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2568779719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9364366</ieee_id><sourcerecordid>2494279503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxa2KqqAtH6CqhCxx6SVb_4sTH5fQwla76qHcrYkzAdPESePsgW9fR7twYC4eeX7vzUiPkC-crTln5vuvm_vtWjDB15JpwZj4QC4E12UmBCvPXntu1Dm5jPGZpSrTl9GfyLmUWuYlYxfkZRPoZp4xzH4I2Q1EbOge3RMEH3s6D7Qa-toHpNseHjFSCMt8hgZmoD7QW8SR7hCm4MMj3Q8NdpFuxrHzySjJ__xNUAXB4USrDmL0rXewLPtMPrbQRbw8vSvy8PPHQ3Wf7X7fbavNLnPSFHPG65qBYty0dTqZY8FUy3IHABp42RStMSJ3GoVxRja5KuuSt0oxaE0hdS5X5NvRdpyGfweMs-19dNh1EHA4RCuUUaIwOZMJvX6HPg-HKaTjrMh1WRSm4CZR_Ei5aYhxwtaOk-9herGc2SUZuyRjl2TsKZmkuTo5H-oemzfFaw4J-HoEPCK-jY3USmot_wOfd5A4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568779719</pqid></control><display><type>article</type><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Pacheco, Andre G. C. ; Krohling, Renato A.</creator><creatorcontrib>Pacheco, Andre G. C. ; Krohling, Renato A.</creatorcontrib><description>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3062002</identifier><identifier>PMID: 33635800</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cancer ; Classification ; Classification systems ; Convolutional neural networks ; data aggregation ; Data mining ; Deep learning ; Demography ; Feature extraction ; Image classification ; Image enhancement ; Lesions ; Logic gates ; Machine learning ; Metadata ; Neural networks ; Skin ; Skin cancer ; skin cancer classification ; Skin diseases ; Skin lesions</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3554-3563</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</citedby><cites>FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</cites><orcidid>0000-0001-8861-4274 ; 0000-0003-0117-9308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9364366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9364366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pacheco, Andre G. C.</creatorcontrib><creatorcontrib>Krohling, Renato A.</creatorcontrib><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classification systems</subject><subject>Convolutional neural networks</subject><subject>data aggregation</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Demography</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Lesions</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Metadata</subject><subject>Neural networks</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin cancer classification</subject><subject>Skin diseases</subject><subject>Skin lesions</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9P3DAQxa2KqqAtH6CqhCxx6SVb_4sTH5fQwla76qHcrYkzAdPESePsgW9fR7twYC4eeX7vzUiPkC-crTln5vuvm_vtWjDB15JpwZj4QC4E12UmBCvPXntu1Dm5jPGZpSrTl9GfyLmUWuYlYxfkZRPoZp4xzH4I2Q1EbOge3RMEH3s6D7Qa-toHpNseHjFSCMt8hgZmoD7QW8SR7hCm4MMj3Q8NdpFuxrHzySjJ__xNUAXB4USrDmL0rXewLPtMPrbQRbw8vSvy8PPHQ3Wf7X7fbavNLnPSFHPG65qBYty0dTqZY8FUy3IHABp42RStMSJ3GoVxRja5KuuSt0oxaE0hdS5X5NvRdpyGfweMs-19dNh1EHA4RCuUUaIwOZMJvX6HPg-HKaTjrMh1WRSm4CZR_Ei5aYhxwtaOk-9herGc2SUZuyRjl2TsKZmkuTo5H-oemzfFaw4J-HoEPCK-jY3USmot_wOfd5A4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pacheco, Andre G. C.</creator><creator>Krohling, Renato A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8861-4274</orcidid><orcidid>https://orcid.org/0000-0003-0117-9308</orcidid></search><sort><creationdate>20210901</creationdate><title>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</title><author>Pacheco, Andre G. C. ; Krohling, Renato A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-1bb0a4019fb3581e704f05caaa6a18d7f9925c6e29c93d548b81f440af973653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classification systems</topic><topic>Convolutional neural networks</topic><topic>data aggregation</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Demography</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Lesions</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Metadata</topic><topic>Neural networks</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin cancer classification</topic><topic>Skin diseases</topic><topic>Skin lesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacheco, Andre G. C.</creatorcontrib><creatorcontrib>Krohling, Renato A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacheco, Andre G. C.</au><au>Krohling, Renato A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>25</volume><issue>9</issue><spage>3554</spage><epage>3563</epage><pages>3554-3563</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Computer-aided skin cancer classification systems built with deep neural networks usually yield predictions based only on images of skin lesions. Despite presenting promising results, it is possible to achieve higher performance by taking into account patient demographics, which are important clues that human experts consider during skin lesion screening. In this article, we deal with the problem of combining images and metadata features using deep learning models applied to skin cancer classification. We propose the Metadata Processing Block (MetaBlock), a novel algorithm that uses metadata to support data classification by enhancing the most relevant features extracted from the images throughout the classification pipeline. We compared the proposed method with two other combination approaches: the MetaNet and one based on features concatenation. Results obtained for two different skin lesion datasets show that our method improves classification for all tested models and performs better than the other combination approaches in 6 out of 10 scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33635800</pmid><doi>10.1109/JBHI.2021.3062002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8861-4274</orcidid><orcidid>https://orcid.org/0000-0003-0117-9308</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-09, Vol.25 (9), p.3554-3563
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2568779719
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cancer
Classification
Classification systems
Convolutional neural networks
data aggregation
Data mining
Deep learning
Demography
Feature extraction
Image classification
Image enhancement
Lesions
Logic gates
Machine learning
Metadata
Neural networks
Skin
Skin cancer
skin cancer classification
Skin diseases
Skin lesions
title An Attention-Based Mechanism to Combine Images and Metadata in Deep Learning Models Applied to Skin Cancer Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Attention-Based%20Mechanism%20to%20Combine%20Images%20and%20Metadata%20in%20Deep%20Learning%20Models%20Applied%20to%20Skin%20Cancer%20Classification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Pacheco,%20Andre%20G.%20C.&rft.date=2021-09-01&rft.volume=25&rft.issue=9&rft.spage=3554&rft.epage=3563&rft.pages=3554-3563&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3062002&rft_dat=%3Cproquest_RIE%3E2494279503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568779719&rft_id=info:pmid/33635800&rft_ieee_id=9364366&rfr_iscdi=true