Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database

The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual's ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2021-07, Vol.12 (3), p.743-760
Hauptverfasser: Thiam, Patrick, Kessler, Viktor, Amirian, Mohammadreza, Bellmann, Peter, Layher, Georg, Zhang, Yan, Velana, Maria, Gruss, Sascha, Walter, Steffen, Traue, Harald C., Schork, Daniel, Kim, Jonghwa, Andre, Elisabeth, Neumann, Heiko, Schwenker, Friedhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 3
container_start_page 743
container_title IEEE transactions on affective computing
container_volume 12
creator Thiam, Patrick
Kessler, Viktor
Amirian, Mohammadreza
Bellmann, Peter
Layher, Georg
Zhang, Yan
Velana, Maria
Gruss, Sascha
Walter, Steffen
Traue, Harald C.
Schork, Daniel
Kim, Jonghwa
Andre, Elisabeth
Neumann, Heiko
Schwenker, Friedhelm
description The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual's ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the relevance of the multi-modal classification approach, which achieves classification rates of respectively 83.39\% 83.39% , 59.53\% 59.53% and 43.89\% 43.89% in a 2-class, 3-class and 4-class pain intensity classification task.
doi_str_mv 10.1109/TAFFC.2019.2892090
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2568777827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8607037</ieee_id><sourcerecordid>2568777827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d5e14eea336784a35cee63b8ae25873244e243b15ce7874600cc4ed78017f9833</originalsourceid><addsrcrecordid>eNpNUE1PAjEUbIwmEuQP6GUTz4ttX3fbHhFBSSAaxXNTdh9aAlvclgP_3vIR47u8yZuZN8kQcstonzGqH-aD8XjY55TpPleaU00vSIdpoXOgorj8h69JL4QVTQMAJZcdMpnt1tHlM1_bdfZmXZNNmohNcHGfvWPlvxoXnW-yRxuwzhKI35h9JAGONv7IPNloF4m9IVdLuw7YO-8u-RyP5sOXfPr6PBkOpnkFGmJeF8gEok35UgkLRYVYwkJZ5IWSwIVALmDB0l0qKUpKq0pgLRVlcqkVQJfcn_5uW_-zwxDNyu_aJkUaXpRKSqm4TCp-UlWtD6HFpdm2bmPbvWHUHFozx9bMoTVzbi2Z7k4mh4h_BlVSSUHCL6fNZwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568777827</pqid></control><display><type>article</type><title>Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database</title><source>IEEE Electronic Library (IEL)</source><creator>Thiam, Patrick ; Kessler, Viktor ; Amirian, Mohammadreza ; Bellmann, Peter ; Layher, Georg ; Zhang, Yan ; Velana, Maria ; Gruss, Sascha ; Walter, Steffen ; Traue, Harald C. ; Schork, Daniel ; Kim, Jonghwa ; Andre, Elisabeth ; Neumann, Heiko ; Schwenker, Friedhelm</creator><creatorcontrib>Thiam, Patrick ; Kessler, Viktor ; Amirian, Mohammadreza ; Bellmann, Peter ; Layher, Georg ; Zhang, Yan ; Velana, Maria ; Gruss, Sascha ; Walter, Steffen ; Traue, Harald C. ; Schork, Daniel ; Kim, Jonghwa ; Andre, Elisabeth ; Neumann, Heiko ; Schwenker, Friedhelm</creatorcontrib><description><![CDATA[The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual's ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the relevance of the multi-modal classification approach, which achieves classification rates of respectively <inline-formula><tex-math notation="LaTeX">83.39\%</tex-math> <mml:math><mml:mrow><mml:mn>83</mml:mn><mml:mo>.</mml:mo><mml:mn>39</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq1-2892090.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">59.53\%</tex-math> <mml:math><mml:mrow><mml:mn>59</mml:mn><mml:mo>.</mml:mo><mml:mn>53</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq2-2892090.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">43.89\%</tex-math> <mml:math><mml:mrow><mml:mn>43</mml:mn><mml:mo>.</mml:mo><mml:mn>89</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq3-2892090.gif"/> </inline-formula> in a 2-class, 3-class and 4-class pain intensity classification task.]]></description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2019.2892090</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Computer architecture ; Electromyography ; Feature extraction ; multi-modal information fusion ; multiple classifier systems ; Pain ; Pain intensity recognition ; Physiology ; Recognition ; Reliability ; signal processing ; Video data</subject><ispartof>IEEE transactions on affective computing, 2021-07, Vol.12 (3), p.743-760</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d5e14eea336784a35cee63b8ae25873244e243b15ce7874600cc4ed78017f9833</citedby><cites>FETCH-LOGICAL-c393t-d5e14eea336784a35cee63b8ae25873244e243b15ce7874600cc4ed78017f9833</cites><orcidid>0000-0002-2367-162X ; 0000-0003-0047-6802 ; 0000-0001-5118-0812 ; 0000-0002-4846-6921 ; 0000-0003-2128-0606 ; 0000-0002-6769-8410 ; 0000-0003-0182-4469 ; 0000-0001-6273-5334 ; 0000-0002-6350-6872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8607037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8607037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thiam, Patrick</creatorcontrib><creatorcontrib>Kessler, Viktor</creatorcontrib><creatorcontrib>Amirian, Mohammadreza</creatorcontrib><creatorcontrib>Bellmann, Peter</creatorcontrib><creatorcontrib>Layher, Georg</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Velana, Maria</creatorcontrib><creatorcontrib>Gruss, Sascha</creatorcontrib><creatorcontrib>Walter, Steffen</creatorcontrib><creatorcontrib>Traue, Harald C.</creatorcontrib><creatorcontrib>Schork, Daniel</creatorcontrib><creatorcontrib>Kim, Jonghwa</creatorcontrib><creatorcontrib>Andre, Elisabeth</creatorcontrib><creatorcontrib>Neumann, Heiko</creatorcontrib><creatorcontrib>Schwenker, Friedhelm</creatorcontrib><title>Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description><![CDATA[The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual's ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the relevance of the multi-modal classification approach, which achieves classification rates of respectively <inline-formula><tex-math notation="LaTeX">83.39\%</tex-math> <mml:math><mml:mrow><mml:mn>83</mml:mn><mml:mo>.</mml:mo><mml:mn>39</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq1-2892090.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">59.53\%</tex-math> <mml:math><mml:mrow><mml:mn>59</mml:mn><mml:mo>.</mml:mo><mml:mn>53</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq2-2892090.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">43.89\%</tex-math> <mml:math><mml:mrow><mml:mn>43</mml:mn><mml:mo>.</mml:mo><mml:mn>89</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq3-2892090.gif"/> </inline-formula> in a 2-class, 3-class and 4-class pain intensity classification task.]]></description><subject>Classification</subject><subject>Computer architecture</subject><subject>Electromyography</subject><subject>Feature extraction</subject><subject>multi-modal information fusion</subject><subject>multiple classifier systems</subject><subject>Pain</subject><subject>Pain intensity recognition</subject><subject>Physiology</subject><subject>Recognition</subject><subject>Reliability</subject><subject>signal processing</subject><subject>Video data</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEUbIwmEuQP6GUTz4ttX3fbHhFBSSAaxXNTdh9aAlvclgP_3vIR47u8yZuZN8kQcstonzGqH-aD8XjY55TpPleaU00vSIdpoXOgorj8h69JL4QVTQMAJZcdMpnt1tHlM1_bdfZmXZNNmohNcHGfvWPlvxoXnW-yRxuwzhKI35h9JAGONv7IPNloF4m9IVdLuw7YO-8u-RyP5sOXfPr6PBkOpnkFGmJeF8gEok35UgkLRYVYwkJZ5IWSwIVALmDB0l0qKUpKq0pgLRVlcqkVQJfcn_5uW_-zwxDNyu_aJkUaXpRKSqm4TCp-UlWtD6HFpdm2bmPbvWHUHFozx9bMoTVzbi2Z7k4mh4h_BlVSSUHCL6fNZwU</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Thiam, Patrick</creator><creator>Kessler, Viktor</creator><creator>Amirian, Mohammadreza</creator><creator>Bellmann, Peter</creator><creator>Layher, Georg</creator><creator>Zhang, Yan</creator><creator>Velana, Maria</creator><creator>Gruss, Sascha</creator><creator>Walter, Steffen</creator><creator>Traue, Harald C.</creator><creator>Schork, Daniel</creator><creator>Kim, Jonghwa</creator><creator>Andre, Elisabeth</creator><creator>Neumann, Heiko</creator><creator>Schwenker, Friedhelm</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2367-162X</orcidid><orcidid>https://orcid.org/0000-0003-0047-6802</orcidid><orcidid>https://orcid.org/0000-0001-5118-0812</orcidid><orcidid>https://orcid.org/0000-0002-4846-6921</orcidid><orcidid>https://orcid.org/0000-0003-2128-0606</orcidid><orcidid>https://orcid.org/0000-0002-6769-8410</orcidid><orcidid>https://orcid.org/0000-0003-0182-4469</orcidid><orcidid>https://orcid.org/0000-0001-6273-5334</orcidid><orcidid>https://orcid.org/0000-0002-6350-6872</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database</title><author>Thiam, Patrick ; Kessler, Viktor ; Amirian, Mohammadreza ; Bellmann, Peter ; Layher, Georg ; Zhang, Yan ; Velana, Maria ; Gruss, Sascha ; Walter, Steffen ; Traue, Harald C. ; Schork, Daniel ; Kim, Jonghwa ; Andre, Elisabeth ; Neumann, Heiko ; Schwenker, Friedhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d5e14eea336784a35cee63b8ae25873244e243b15ce7874600cc4ed78017f9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Computer architecture</topic><topic>Electromyography</topic><topic>Feature extraction</topic><topic>multi-modal information fusion</topic><topic>multiple classifier systems</topic><topic>Pain</topic><topic>Pain intensity recognition</topic><topic>Physiology</topic><topic>Recognition</topic><topic>Reliability</topic><topic>signal processing</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiam, Patrick</creatorcontrib><creatorcontrib>Kessler, Viktor</creatorcontrib><creatorcontrib>Amirian, Mohammadreza</creatorcontrib><creatorcontrib>Bellmann, Peter</creatorcontrib><creatorcontrib>Layher, Georg</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Velana, Maria</creatorcontrib><creatorcontrib>Gruss, Sascha</creatorcontrib><creatorcontrib>Walter, Steffen</creatorcontrib><creatorcontrib>Traue, Harald C.</creatorcontrib><creatorcontrib>Schork, Daniel</creatorcontrib><creatorcontrib>Kim, Jonghwa</creatorcontrib><creatorcontrib>Andre, Elisabeth</creatorcontrib><creatorcontrib>Neumann, Heiko</creatorcontrib><creatorcontrib>Schwenker, Friedhelm</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thiam, Patrick</au><au>Kessler, Viktor</au><au>Amirian, Mohammadreza</au><au>Bellmann, Peter</au><au>Layher, Georg</au><au>Zhang, Yan</au><au>Velana, Maria</au><au>Gruss, Sascha</au><au>Walter, Steffen</au><au>Traue, Harald C.</au><au>Schork, Daniel</au><au>Kim, Jonghwa</au><au>Andre, Elisabeth</au><au>Neumann, Heiko</au><au>Schwenker, Friedhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>743</spage><epage>760</epage><pages>743-760</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract><![CDATA[The subjective nature of pain makes it a very challenging phenomenon to assess. Most of the current pain assessment approaches rely on an individual's ability to recognise and report an observed pain episode. However, pain perception and expression are affected by numerous factors ranging from personality traits to physical and psychological health state. Hence, several approaches have been proposed for the automatic recognition of pain intensity, based on measurable physiological and audiovisual parameters. In the current paper, an assessment of several fusion architectures for the development of a multi-modal pain intensity classification system is performed. The contribution of the presented work is two-fold: (1) 3 distinctive modalities consisting of audio, video and physiological channels are assessed and combined for the classification of several levels of pain elicitation. (2) An extensive assessment of several fusion strategies is carried out in order to design a classification architecture that improves the performance of the pain recognition system. The assessment is based on the SenseEmotion Database and experimental validation demonstrates the relevance of the multi-modal classification approach, which achieves classification rates of respectively <inline-formula><tex-math notation="LaTeX">83.39\%</tex-math> <mml:math><mml:mrow><mml:mn>83</mml:mn><mml:mo>.</mml:mo><mml:mn>39</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq1-2892090.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">59.53\%</tex-math> <mml:math><mml:mrow><mml:mn>59</mml:mn><mml:mo>.</mml:mo><mml:mn>53</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq2-2892090.gif"/> </inline-formula> and <inline-formula><tex-math notation="LaTeX">43.89\%</tex-math> <mml:math><mml:mrow><mml:mn>43</mml:mn><mml:mo>.</mml:mo><mml:mn>89</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="thiam-ieq3-2892090.gif"/> </inline-formula> in a 2-class, 3-class and 4-class pain intensity classification task.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2019.2892090</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2367-162X</orcidid><orcidid>https://orcid.org/0000-0003-0047-6802</orcidid><orcidid>https://orcid.org/0000-0001-5118-0812</orcidid><orcidid>https://orcid.org/0000-0002-4846-6921</orcidid><orcidid>https://orcid.org/0000-0003-2128-0606</orcidid><orcidid>https://orcid.org/0000-0002-6769-8410</orcidid><orcidid>https://orcid.org/0000-0003-0182-4469</orcidid><orcidid>https://orcid.org/0000-0001-6273-5334</orcidid><orcidid>https://orcid.org/0000-0002-6350-6872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2021-07, Vol.12 (3), p.743-760
issn 1949-3045
1949-3045
language eng
recordid cdi_proquest_journals_2568777827
source IEEE Electronic Library (IEL)
subjects Classification
Computer architecture
Electromyography
Feature extraction
multi-modal information fusion
multiple classifier systems
Pain
Pain intensity recognition
Physiology
Recognition
Reliability
signal processing
Video data
title Multi-Modal Pain Intensity Recognition Based on the SenseEmotion Database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Modal%20Pain%20Intensity%20Recognition%20Based%20on%20the%20SenseEmotion%20Database&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Thiam,%20Patrick&rft.date=2021-07-01&rft.volume=12&rft.issue=3&rft.spage=743&rft.epage=760&rft.pages=743-760&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2019.2892090&rft_dat=%3Cproquest_RIE%3E2568777827%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568777827&rft_id=info:pmid/&rft_ieee_id=8607037&rfr_iscdi=true