Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes

We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2021-10, Vol.139, p.103080, Article 103080
Hauptverfasser: Liu, Zhong-Yuan, Su, Jian-Ping, Liu, Hao, Ye, Chunyang, Liu, Ligang, Fu, Xiao-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103080
container_title Computer aided design
container_volume 139
creator Liu, Zhong-Yuan
Su, Jian-Ping
Liu, Hao
Ye, Chunyang
Liu, Ligang
Fu, Xiao-Ming
description We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality. [Display omitted] •Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.
doi_str_mv 10.1016/j.cad.2021.103080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448521000919</els_id><sourcerecordid>2568703846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLcFz6mTbHaT4ElKtUJFkHoO2WS23aVtarIV_PemrGdPMwPPOzM8hNwxmDJg9UM_ddZPOXCW5xIUnJEJU1JTXqvqnEwAGFAhVHVJrlLqATJZ6gmZzWMMkTbhuPfoi7lfI21syu0H7jBtuv26CG2x6NYbGqLHWKxwiHaDPtpt8ZYJTDfkorXbhLd_9Zp8Ps9XswVdvr-8zp6W1JW8GqiWqrKca2TSKsdAMQnKohCgpWhq620pW4-VLoV0KLmXTaVEDVag1jWT5TW5H_ceYvg6YhpMH45xn08aXtVKQpnxTLGRcjGkFLE1h9jtbPwxDMzJlelNdmVOrszoKmcexwzm9787jCa5DvcOfRfRDcaH7p_0L7YKbuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703846</pqid></control><display><type>article</type><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</creator><creatorcontrib>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</creatorcontrib><description>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality. [Display omitted] •Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2021.103080</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Bounded approximation error ; Edge-based remeshing ; Errors ; High-order tetrahedral mesh ; Mathematical analysis ; Mesh complexity ; Optimization ; Tetrahedra ; Topology</subject><ispartof>Computer aided design, 2021-10, Vol.139, p.103080, Article 103080</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</citedby><cites>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</cites><orcidid>0000-0001-8479-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2021.103080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Zhong-Yuan</creatorcontrib><creatorcontrib>Su, Jian-Ping</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Ye, Chunyang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Fu, Xiao-Ming</creatorcontrib><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><title>Computer aided design</title><description>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality. [Display omitted] •Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bounded approximation error</subject><subject>Edge-based remeshing</subject><subject>Errors</subject><subject>High-order tetrahedral mesh</subject><subject>Mathematical analysis</subject><subject>Mesh complexity</subject><subject>Optimization</subject><subject>Tetrahedra</subject><subject>Topology</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLcFz6mTbHaT4ElKtUJFkHoO2WS23aVtarIV_PemrGdPMwPPOzM8hNwxmDJg9UM_ddZPOXCW5xIUnJEJU1JTXqvqnEwAGFAhVHVJrlLqATJZ6gmZzWMMkTbhuPfoi7lfI21syu0H7jBtuv26CG2x6NYbGqLHWKxwiHaDPtpt8ZYJTDfkorXbhLd_9Zp8Ps9XswVdvr-8zp6W1JW8GqiWqrKca2TSKsdAMQnKohCgpWhq620pW4-VLoV0KLmXTaVEDVag1jWT5TW5H_ceYvg6YhpMH45xn08aXtVKQpnxTLGRcjGkFLE1h9jtbPwxDMzJlelNdmVOrszoKmcexwzm9787jCa5DvcOfRfRDcaH7p_0L7YKbuo</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Zhong-Yuan</creator><creator>Su, Jian-Ping</creator><creator>Liu, Hao</creator><creator>Ye, Chunyang</creator><creator>Liu, Ligang</creator><creator>Fu, Xiao-Ming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8479-0107</orcidid></search><sort><creationdate>202110</creationdate><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><author>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bounded approximation error</topic><topic>Edge-based remeshing</topic><topic>Errors</topic><topic>High-order tetrahedral mesh</topic><topic>Mathematical analysis</topic><topic>Mesh complexity</topic><topic>Optimization</topic><topic>Tetrahedra</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhong-Yuan</creatorcontrib><creatorcontrib>Su, Jian-Ping</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Ye, Chunyang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Fu, Xiao-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhong-Yuan</au><au>Su, Jian-Ping</au><au>Liu, Hao</au><au>Ye, Chunyang</au><au>Liu, Ligang</au><au>Fu, Xiao-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</atitle><jtitle>Computer aided design</jtitle><date>2021-10</date><risdate>2021</risdate><volume>139</volume><spage>103080</spage><pages>103080-</pages><artnum>103080</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality. [Display omitted] •Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2021.103080</doi><orcidid>https://orcid.org/0000-0001-8479-0107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2021-10, Vol.139, p.103080, Article 103080
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_journals_2568703846
source Elsevier ScienceDirect Journals
subjects Algorithms
Approximation
Bounded approximation error
Edge-based remeshing
Errors
High-order tetrahedral mesh
Mathematical analysis
Mesh complexity
Optimization
Tetrahedra
Topology
title Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error-bounded%20Edge-based%20Remeshing%20of%20High-order%20Tetrahedral%20Meshes&rft.jtitle=Computer%20aided%20design&rft.au=Liu,%20Zhong-Yuan&rft.date=2021-10&rft.volume=139&rft.spage=103080&rft.pages=103080-&rft.artnum=103080&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2021.103080&rft_dat=%3Cproquest_cross%3E2568703846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568703846&rft_id=info:pmid/&rft_els_id=S0010448521000919&rfr_iscdi=true