Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes
We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetra...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2021-10, Vol.139, p.103080, Article 103080 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103080 |
container_title | Computer aided design |
container_volume | 139 |
creator | Liu, Zhong-Yuan Su, Jian-Ping Liu, Hao Ye, Chunyang Liu, Ligang Fu, Xiao-Ming |
description | We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality.
[Display omitted]
•Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible. |
doi_str_mv | 10.1016/j.cad.2021.103080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448521000919</els_id><sourcerecordid>2568703846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLcFz6mTbHaT4ElKtUJFkHoO2WS23aVtarIV_PemrGdPMwPPOzM8hNwxmDJg9UM_ddZPOXCW5xIUnJEJU1JTXqvqnEwAGFAhVHVJrlLqATJZ6gmZzWMMkTbhuPfoi7lfI21syu0H7jBtuv26CG2x6NYbGqLHWKxwiHaDPtpt8ZYJTDfkorXbhLd_9Zp8Ps9XswVdvr-8zp6W1JW8GqiWqrKca2TSKsdAMQnKohCgpWhq620pW4-VLoV0KLmXTaVEDVag1jWT5TW5H_ceYvg6YhpMH45xn08aXtVKQpnxTLGRcjGkFLE1h9jtbPwxDMzJlelNdmVOrszoKmcexwzm9787jCa5DvcOfRfRDcaH7p_0L7YKbuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703846</pqid></control><display><type>article</type><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</creator><creatorcontrib>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</creatorcontrib><description>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality.
[Display omitted]
•Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2021.103080</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Bounded approximation error ; Edge-based remeshing ; Errors ; High-order tetrahedral mesh ; Mathematical analysis ; Mesh complexity ; Optimization ; Tetrahedra ; Topology</subject><ispartof>Computer aided design, 2021-10, Vol.139, p.103080, Article 103080</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</citedby><cites>FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</cites><orcidid>0000-0001-8479-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cad.2021.103080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Zhong-Yuan</creatorcontrib><creatorcontrib>Su, Jian-Ping</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Ye, Chunyang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Fu, Xiao-Ming</creatorcontrib><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><title>Computer aided design</title><description>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality.
[Display omitted]
•Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bounded approximation error</subject><subject>Edge-based remeshing</subject><subject>Errors</subject><subject>High-order tetrahedral mesh</subject><subject>Mathematical analysis</subject><subject>Mesh complexity</subject><subject>Optimization</subject><subject>Tetrahedra</subject><subject>Topology</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLcFz6mTbHaT4ElKtUJFkHoO2WS23aVtarIV_PemrGdPMwPPOzM8hNwxmDJg9UM_ddZPOXCW5xIUnJEJU1JTXqvqnEwAGFAhVHVJrlLqATJZ6gmZzWMMkTbhuPfoi7lfI21syu0H7jBtuv26CG2x6NYbGqLHWKxwiHaDPtpt8ZYJTDfkorXbhLd_9Zp8Ps9XswVdvr-8zp6W1JW8GqiWqrKca2TSKsdAMQnKohCgpWhq620pW4-VLoV0KLmXTaVEDVag1jWT5TW5H_ceYvg6YhpMH45xn08aXtVKQpnxTLGRcjGkFLE1h9jtbPwxDMzJlelNdmVOrszoKmcexwzm9787jCa5DvcOfRfRDcaH7p_0L7YKbuo</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Liu, Zhong-Yuan</creator><creator>Su, Jian-Ping</creator><creator>Liu, Hao</creator><creator>Ye, Chunyang</creator><creator>Liu, Ligang</creator><creator>Fu, Xiao-Ming</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8479-0107</orcidid></search><sort><creationdate>202110</creationdate><title>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</title><author>Liu, Zhong-Yuan ; Su, Jian-Ping ; Liu, Hao ; Ye, Chunyang ; Liu, Ligang ; Fu, Xiao-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9785a229e17a8c1081708ae440974b6ada37fde59347ce72d7b58460a4e996173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bounded approximation error</topic><topic>Edge-based remeshing</topic><topic>Errors</topic><topic>High-order tetrahedral mesh</topic><topic>Mathematical analysis</topic><topic>Mesh complexity</topic><topic>Optimization</topic><topic>Tetrahedra</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhong-Yuan</creatorcontrib><creatorcontrib>Su, Jian-Ping</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Ye, Chunyang</creatorcontrib><creatorcontrib>Liu, Ligang</creatorcontrib><creatorcontrib>Fu, Xiao-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhong-Yuan</au><au>Su, Jian-Ping</au><au>Liu, Hao</au><au>Ye, Chunyang</au><au>Liu, Ligang</au><au>Fu, Xiao-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes</atitle><jtitle>Computer aided design</jtitle><date>2021-10</date><risdate>2021</risdate><volume>139</volume><spage>103080</spage><pages>103080-</pages><artnum>103080</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present a robust method to generate high-quality high-order tetrahedral meshes with bounded approximation errors and low mesh complexity. The success of our method relies on two key components. The first one is three novel local operations that robustly modify the topology of the high-order tetrahedral mesh while avoiding invalid (flipped or degenerate) elements. In practice, our meshing algorithm follows the edge-based remeshing algorithm that iteratively conducts these local topological operations and a geometric optimization operation to improve mesh quality. The second is a new containment check procedure that robustly judges whether the approximation error between the input mesh and the high-order mesh exceeds the user-specified bound. If one operation causes the error-bounded constraint to be violated, we reject this operation to ensure a bounded approximation error. Besides, the number of tetrahedrons of the high-order mesh is reduced by progressively increasing the target edge length in the edge-based remeshing algorithm. A large number of experimental results have shown the capability and feasibility of our method. Compared to other state-of-the-art methods, our method achieves higher robustness and quality.
[Display omitted]
•Generating high-order tetrahedral meshes.•Satisfying the error-bounded and distortion-bounded conditions.•With as few tetrahedrons as possible.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2021.103080</doi><orcidid>https://orcid.org/0000-0001-8479-0107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2021-10, Vol.139, p.103080, Article 103080 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_journals_2568703846 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Approximation Bounded approximation error Edge-based remeshing Errors High-order tetrahedral mesh Mathematical analysis Mesh complexity Optimization Tetrahedra Topology |
title | Error-bounded Edge-based Remeshing of High-order Tetrahedral Meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error-bounded%20Edge-based%20Remeshing%20of%20High-order%20Tetrahedral%20Meshes&rft.jtitle=Computer%20aided%20design&rft.au=Liu,%20Zhong-Yuan&rft.date=2021-10&rft.volume=139&rft.spage=103080&rft.pages=103080-&rft.artnum=103080&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2021.103080&rft_dat=%3Cproquest_cross%3E2568703846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568703846&rft_id=info:pmid/&rft_els_id=S0010448521000919&rfr_iscdi=true |