Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics
We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of ch...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-09, Vol.390, p.138802, Article 138802 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 138802 |
container_title | Electrochimica acta |
container_volume | 390 |
creator | Lopata, J.S. Kang, S-G. Cho, H-S. Kim, C-H. Weidner, J.W. Shimpalee, S. |
description | We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover. |
doi_str_mv | 10.1016/j.electacta.2021.138802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621010926</els_id><sourcerecordid>2568703223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</originalsourceid><addsrcrecordid>eNqFUV2LFDEQDKLgevobDPh6s5ePnWTm8Tj0PDi4F30OmU7PknU2WZPMyv4o_6OZHfFVSJOQriqquwj5yNmWM67uDlucEIqtZyuY4Fsuu46JV2TDOy0b2bX9a7JhjMtmpzr1lrzL-cAY00qzDfn9FM6Yi9_b4sOe-jBOMwZAGke6x3jEki7UBkfjCdOKgRicLz6GTGOgUwQ7UZhTwlBulybUxwKN4fbKhBRzjmdMVZ3a6YedfED6y5b6c7We4nTJPtM5r_LH01yu_Cpc7XhH3SXYo4f8nrwZ7ZTxw9_7hnz_8vnbw9fm-eXx6eH-uQHZi9IMre6dQi1VC4CDduhg51otgNcC26ph2Dmn2K4feduqvhtH0btusMB7yUDekE-r7inFn3PdjznEOVU_2YhWdZpJIWRF6RV1nTDhaE7JH226GM7Mko05mH_ZmCUbs2ZTmfcrE-sQZ4_JZPDL2p1PFW9c9P_V-AOJZKJn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703223</pqid></control><display><type>article</type><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</creator><creatorcontrib>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</creatorcontrib><description>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.138802</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Capillary action ; Computational fluid dynamics ; Crossovers ; Current distribution ; Dissolved gases ; Electrochemical cells ; Electrode/separator interface ; Electrolysis ; Electrolytic cells ; Feed rate ; Fluid dynamics ; Local current ; Pseudo-two-phase ; Separators ; Three dimensional models ; Three-dimensional</subject><ispartof>Electrochimica acta, 2021-09, Vol.390, p.138802, Article 138802</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 10, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</citedby><cites>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</cites><orcidid>0000-0002-9264-6743 ; 0000-0003-1348-4836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.138802$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lopata, J.S.</creatorcontrib><creatorcontrib>Kang, S-G.</creatorcontrib><creatorcontrib>Cho, H-S.</creatorcontrib><creatorcontrib>Kim, C-H.</creatorcontrib><creatorcontrib>Weidner, J.W.</creatorcontrib><creatorcontrib>Shimpalee, S.</creatorcontrib><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><title>Electrochimica acta</title><description>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</description><subject>Capillary action</subject><subject>Computational fluid dynamics</subject><subject>Crossovers</subject><subject>Current distribution</subject><subject>Dissolved gases</subject><subject>Electrochemical cells</subject><subject>Electrode/separator interface</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Feed rate</subject><subject>Fluid dynamics</subject><subject>Local current</subject><subject>Pseudo-two-phase</subject><subject>Separators</subject><subject>Three dimensional models</subject><subject>Three-dimensional</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUV2LFDEQDKLgevobDPh6s5ePnWTm8Tj0PDi4F30OmU7PknU2WZPMyv4o_6OZHfFVSJOQriqquwj5yNmWM67uDlucEIqtZyuY4Fsuu46JV2TDOy0b2bX9a7JhjMtmpzr1lrzL-cAY00qzDfn9FM6Yi9_b4sOe-jBOMwZAGke6x3jEki7UBkfjCdOKgRicLz6GTGOgUwQ7UZhTwlBulybUxwKN4fbKhBRzjmdMVZ3a6YedfED6y5b6c7We4nTJPtM5r_LH01yu_Cpc7XhH3SXYo4f8nrwZ7ZTxw9_7hnz_8vnbw9fm-eXx6eH-uQHZi9IMre6dQi1VC4CDduhg51otgNcC26ph2Dmn2K4feduqvhtH0btusMB7yUDekE-r7inFn3PdjznEOVU_2YhWdZpJIWRF6RV1nTDhaE7JH226GM7Mko05mH_ZmCUbs2ZTmfcrE-sQZ4_JZPDL2p1PFW9c9P_V-AOJZKJn</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Lopata, J.S.</creator><creator>Kang, S-G.</creator><creator>Cho, H-S.</creator><creator>Kim, C-H.</creator><creator>Weidner, J.W.</creator><creator>Shimpalee, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9264-6743</orcidid><orcidid>https://orcid.org/0000-0003-1348-4836</orcidid></search><sort><creationdate>20210910</creationdate><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><author>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary action</topic><topic>Computational fluid dynamics</topic><topic>Crossovers</topic><topic>Current distribution</topic><topic>Dissolved gases</topic><topic>Electrochemical cells</topic><topic>Electrode/separator interface</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Feed rate</topic><topic>Fluid dynamics</topic><topic>Local current</topic><topic>Pseudo-two-phase</topic><topic>Separators</topic><topic>Three dimensional models</topic><topic>Three-dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopata, J.S.</creatorcontrib><creatorcontrib>Kang, S-G.</creatorcontrib><creatorcontrib>Cho, H-S.</creatorcontrib><creatorcontrib>Kim, C-H.</creatorcontrib><creatorcontrib>Weidner, J.W.</creatorcontrib><creatorcontrib>Shimpalee, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopata, J.S.</au><au>Kang, S-G.</au><au>Cho, H-S.</au><au>Kim, C-H.</au><au>Weidner, J.W.</au><au>Shimpalee, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</atitle><jtitle>Electrochimica acta</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>390</volume><spage>138802</spage><pages>138802-</pages><artnum>138802</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.138802</doi><orcidid>https://orcid.org/0000-0002-9264-6743</orcidid><orcidid>https://orcid.org/0000-0003-1348-4836</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-09, Vol.390, p.138802, Article 138802 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2568703223 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Capillary action Computational fluid dynamics Crossovers Current distribution Dissolved gases Electrochemical cells Electrode/separator interface Electrolysis Electrolytic cells Feed rate Fluid dynamics Local current Pseudo-two-phase Separators Three dimensional models Three-dimensional |
title | Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20influence%20of%20geometry%20and%20operating%20conditions%20on%20local%20current,%20concentration,%20and%20crossover%20in%20alkaline%20water%20electrolysis%20using%20computational%20fluid%20dynamics&rft.jtitle=Electrochimica%20acta&rft.au=Lopata,%20J.S.&rft.date=2021-09-10&rft.volume=390&rft.spage=138802&rft.pages=138802-&rft.artnum=138802&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.138802&rft_dat=%3Cproquest_cross%3E2568703223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568703223&rft_id=info:pmid/&rft_els_id=S0013468621010926&rfr_iscdi=true |