Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics

We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-09, Vol.390, p.138802, Article 138802
Hauptverfasser: Lopata, J.S., Kang, S-G., Cho, H-S., Kim, C-H., Weidner, J.W., Shimpalee, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 138802
container_title Electrochimica acta
container_volume 390
creator Lopata, J.S.
Kang, S-G.
Cho, H-S.
Kim, C-H.
Weidner, J.W.
Shimpalee, S.
description We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.
doi_str_mv 10.1016/j.electacta.2021.138802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568703223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621010926</els_id><sourcerecordid>2568703223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</originalsourceid><addsrcrecordid>eNqFUV2LFDEQDKLgevobDPh6s5ePnWTm8Tj0PDi4F30OmU7PknU2WZPMyv4o_6OZHfFVSJOQriqquwj5yNmWM67uDlucEIqtZyuY4Fsuu46JV2TDOy0b2bX9a7JhjMtmpzr1lrzL-cAY00qzDfn9FM6Yi9_b4sOe-jBOMwZAGke6x3jEki7UBkfjCdOKgRicLz6GTGOgUwQ7UZhTwlBulybUxwKN4fbKhBRzjmdMVZ3a6YedfED6y5b6c7We4nTJPtM5r_LH01yu_Cpc7XhH3SXYo4f8nrwZ7ZTxw9_7hnz_8vnbw9fm-eXx6eH-uQHZi9IMre6dQi1VC4CDduhg51otgNcC26ph2Dmn2K4feduqvhtH0btusMB7yUDekE-r7inFn3PdjznEOVU_2YhWdZpJIWRF6RV1nTDhaE7JH226GM7Mko05mH_ZmCUbs2ZTmfcrE-sQZ4_JZPDL2p1PFW9c9P_V-AOJZKJn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568703223</pqid></control><display><type>article</type><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</creator><creatorcontrib>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</creatorcontrib><description>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.138802</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Capillary action ; Computational fluid dynamics ; Crossovers ; Current distribution ; Dissolved gases ; Electrochemical cells ; Electrode/separator interface ; Electrolysis ; Electrolytic cells ; Feed rate ; Fluid dynamics ; Local current ; Pseudo-two-phase ; Separators ; Three dimensional models ; Three-dimensional</subject><ispartof>Electrochimica acta, 2021-09, Vol.390, p.138802, Article 138802</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 10, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</citedby><cites>FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</cites><orcidid>0000-0002-9264-6743 ; 0000-0003-1348-4836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.138802$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lopata, J.S.</creatorcontrib><creatorcontrib>Kang, S-G.</creatorcontrib><creatorcontrib>Cho, H-S.</creatorcontrib><creatorcontrib>Kim, C-H.</creatorcontrib><creatorcontrib>Weidner, J.W.</creatorcontrib><creatorcontrib>Shimpalee, S.</creatorcontrib><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><title>Electrochimica acta</title><description>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</description><subject>Capillary action</subject><subject>Computational fluid dynamics</subject><subject>Crossovers</subject><subject>Current distribution</subject><subject>Dissolved gases</subject><subject>Electrochemical cells</subject><subject>Electrode/separator interface</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Feed rate</subject><subject>Fluid dynamics</subject><subject>Local current</subject><subject>Pseudo-two-phase</subject><subject>Separators</subject><subject>Three dimensional models</subject><subject>Three-dimensional</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUV2LFDEQDKLgevobDPh6s5ePnWTm8Tj0PDi4F30OmU7PknU2WZPMyv4o_6OZHfFVSJOQriqquwj5yNmWM67uDlucEIqtZyuY4Fsuu46JV2TDOy0b2bX9a7JhjMtmpzr1lrzL-cAY00qzDfn9FM6Yi9_b4sOe-jBOMwZAGke6x3jEki7UBkfjCdOKgRicLz6GTGOgUwQ7UZhTwlBulybUxwKN4fbKhBRzjmdMVZ3a6YedfED6y5b6c7We4nTJPtM5r_LH01yu_Cpc7XhH3SXYo4f8nrwZ7ZTxw9_7hnz_8vnbw9fm-eXx6eH-uQHZi9IMre6dQi1VC4CDduhg51otgNcC26ph2Dmn2K4feduqvhtH0btusMB7yUDekE-r7inFn3PdjznEOVU_2YhWdZpJIWRF6RV1nTDhaE7JH226GM7Mko05mH_ZmCUbs2ZTmfcrE-sQZ4_JZPDL2p1PFW9c9P_V-AOJZKJn</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Lopata, J.S.</creator><creator>Kang, S-G.</creator><creator>Cho, H-S.</creator><creator>Kim, C-H.</creator><creator>Weidner, J.W.</creator><creator>Shimpalee, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9264-6743</orcidid><orcidid>https://orcid.org/0000-0003-1348-4836</orcidid></search><sort><creationdate>20210910</creationdate><title>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</title><author>Lopata, J.S. ; Kang, S-G. ; Cho, H-S. ; Kim, C-H. ; Weidner, J.W. ; Shimpalee, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b579d6e7365cceb7dedc4d572c172cca56bb4dd6049f155698ff29d8bac1930c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capillary action</topic><topic>Computational fluid dynamics</topic><topic>Crossovers</topic><topic>Current distribution</topic><topic>Dissolved gases</topic><topic>Electrochemical cells</topic><topic>Electrode/separator interface</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Feed rate</topic><topic>Fluid dynamics</topic><topic>Local current</topic><topic>Pseudo-two-phase</topic><topic>Separators</topic><topic>Three dimensional models</topic><topic>Three-dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopata, J.S.</creatorcontrib><creatorcontrib>Kang, S-G.</creatorcontrib><creatorcontrib>Cho, H-S.</creatorcontrib><creatorcontrib>Kim, C-H.</creatorcontrib><creatorcontrib>Weidner, J.W.</creatorcontrib><creatorcontrib>Shimpalee, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopata, J.S.</au><au>Kang, S-G.</au><au>Cho, H-S.</au><au>Kim, C-H.</au><au>Weidner, J.W.</au><au>Shimpalee, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics</atitle><jtitle>Electrochimica acta</jtitle><date>2021-09-10</date><risdate>2021</risdate><volume>390</volume><spage>138802</spage><pages>138802-</pages><artnum>138802</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>We use a three-dimensional computational fluid dynamics model to examine the liquid saturation, KOH concentration, and gas crossover in an alkaline diaphragm water electrolysis device. The effects of cell potential, solution feed rate, and aspects of the design such as the locations and widths of channels on performance and crossover were studied. The results build a case for implementing a separator transport model and an electrode/separator interface model because of the concentration changes observed at the anode and cathode. Simulations suggest a strong relationship between solution feed rate and the nature of dissolved gas crossover through the diaphragm due to the differential liquid pressure driving force. This work underscores the importance of three-dimensional modeling for the design of electrochemical cells, as it can identify issues linked to the geometry, e.g., low local current density or high local gas crossover.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.138802</doi><orcidid>https://orcid.org/0000-0002-9264-6743</orcidid><orcidid>https://orcid.org/0000-0003-1348-4836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-09, Vol.390, p.138802, Article 138802
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2568703223
source Elsevier ScienceDirect Journals Complete
subjects Capillary action
Computational fluid dynamics
Crossovers
Current distribution
Dissolved gases
Electrochemical cells
Electrode/separator interface
Electrolysis
Electrolytic cells
Feed rate
Fluid dynamics
Local current
Pseudo-two-phase
Separators
Three dimensional models
Three-dimensional
title Investigating influence of geometry and operating conditions on local current, concentration, and crossover in alkaline water electrolysis using computational fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20influence%20of%20geometry%20and%20operating%20conditions%20on%20local%20current,%20concentration,%20and%20crossover%20in%20alkaline%20water%20electrolysis%20using%20computational%20fluid%20dynamics&rft.jtitle=Electrochimica%20acta&rft.au=Lopata,%20J.S.&rft.date=2021-09-10&rft.volume=390&rft.spage=138802&rft.pages=138802-&rft.artnum=138802&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.138802&rft_dat=%3Cproquest_cross%3E2568703223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568703223&rft_id=info:pmid/&rft_els_id=S0013468621010926&rfr_iscdi=true