Visual product recommendation using neural aggregation network and context gating

In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1368 (3), p.32016
Hauptverfasser: Demochkin, K V, Savchenko, A V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32016
container_title Journal of physics. Conference series
container_volume 1368
creator Demochkin, K V
Savchenko, A V
description In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.
doi_str_mv 10.1088/1742-6596/1368/3/032016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568451875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568451875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-Bgu-CWtzadPsoyxeWVDx8hrSZFK67iY1aVH_vS2VFUFwXmbgnDMzfAgdE3xGsBApKTI64_mcp4RxkbIUM4oJ30GTrbK7nYXYRwcxrjBmfRUT9PBSx06tkyZ40-k2CaD9ZgPOqLb2Luli7arEQRd6j6qqANUoOGjffXhNlDOJ9q6FjzYZJFcdoj2r1hGOvvsUPV9ePC2uZ8u7q5vF-XKmGRV8xsoMa1HQXJUawGY4F1YZwW1GwDBaFhobmwEruVaCFUbrbG5xySkoYJTnbIpOxr39628dxFaufBdcf1LSnIssJ6IYXMXo0sHHGMDKJtQbFT4lwXLgJwcycqAkB36SyZFfn2RjsvbNz-r_U6d_pG7vF4-_jbIxln0BbnCBiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568451875</pqid></control><display><type>article</type><title>Visual product recommendation using neural aggregation network and context gating</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Demochkin, K V ; Savchenko, A V</creator><creatorcontrib>Demochkin, K V ; Savchenko, A V</creatorcontrib><description>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1368/3/032016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Agglomeration ; Artificial neural networks ; Classification ; Context ; Physics ; Recommender systems</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1368 (3), p.32016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</citedby><cites>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1368/3/032016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Demochkin, K V</creatorcontrib><creatorcontrib>Savchenko, A V</creatorcontrib><title>Visual product recommendation using neural aggregation network and context gating</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</description><subject>Agglomeration</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Context</subject><subject>Physics</subject><subject>Recommender systems</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-Bgu-CWtzadPsoyxeWVDx8hrSZFK67iY1aVH_vS2VFUFwXmbgnDMzfAgdE3xGsBApKTI64_mcp4RxkbIUM4oJ30GTrbK7nYXYRwcxrjBmfRUT9PBSx06tkyZ40-k2CaD9ZgPOqLb2Luli7arEQRd6j6qqANUoOGjffXhNlDOJ9q6FjzYZJFcdoj2r1hGOvvsUPV9ePC2uZ8u7q5vF-XKmGRV8xsoMa1HQXJUawGY4F1YZwW1GwDBaFhobmwEruVaCFUbrbG5xySkoYJTnbIpOxr39628dxFaufBdcf1LSnIssJ6IYXMXo0sHHGMDKJtQbFT4lwXLgJwcycqAkB36SyZFfn2RjsvbNz-r_U6d_pG7vF4-_jbIxln0BbnCBiQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Demochkin, K V</creator><creator>Savchenko, A V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Visual product recommendation using neural aggregation network and context gating</title><author>Demochkin, K V ; Savchenko, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Context</topic><topic>Physics</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demochkin, K V</creatorcontrib><creatorcontrib>Savchenko, A V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demochkin, K V</au><au>Savchenko, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual product recommendation using neural aggregation network and context gating</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1368</volume><issue>3</issue><spage>32016</spage><pages>32016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1368/3/032016</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-11, Vol.1368 (3), p.32016
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2568451875
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agglomeration
Artificial neural networks
Classification
Context
Physics
Recommender systems
title Visual product recommendation using neural aggregation network and context gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20product%20recommendation%20using%20neural%20aggregation%20network%20and%20context%20gating&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Demochkin,%20K%20V&rft.date=2019-11-01&rft.volume=1368&rft.issue=3&rft.spage=32016&rft.pages=32016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1368/3/032016&rft_dat=%3Cproquest_cross%3E2568451875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568451875&rft_id=info:pmid/&rfr_iscdi=true