Visual product recommendation using neural aggregation network and context gating
In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnab...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-11, Vol.1368 (3), p.32016 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 32016 |
container_title | Journal of physics. Conference series |
container_volume | 1368 |
creator | Demochkin, K V Savchenko, A V |
description | In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector. |
doi_str_mv | 10.1088/1742-6596/1368/3/032016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568451875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568451875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-Bgu-CWtzadPsoyxeWVDx8hrSZFK67iY1aVH_vS2VFUFwXmbgnDMzfAgdE3xGsBApKTI64_mcp4RxkbIUM4oJ30GTrbK7nYXYRwcxrjBmfRUT9PBSx06tkyZ40-k2CaD9ZgPOqLb2Luli7arEQRd6j6qqANUoOGjffXhNlDOJ9q6FjzYZJFcdoj2r1hGOvvsUPV9ePC2uZ8u7q5vF-XKmGRV8xsoMa1HQXJUawGY4F1YZwW1GwDBaFhobmwEruVaCFUbrbG5xySkoYJTnbIpOxr39628dxFaufBdcf1LSnIssJ6IYXMXo0sHHGMDKJtQbFT4lwXLgJwcycqAkB36SyZFfn2RjsvbNz-r_U6d_pG7vF4-_jbIxln0BbnCBiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568451875</pqid></control><display><type>article</type><title>Visual product recommendation using neural aggregation network and context gating</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Demochkin, K V ; Savchenko, A V</creator><creatorcontrib>Demochkin, K V ; Savchenko, A V</creatorcontrib><description>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1368/3/032016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Agglomeration ; Artificial neural networks ; Classification ; Context ; Physics ; Recommender systems</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1368 (3), p.32016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</citedby><cites>FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1368/3/032016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Demochkin, K V</creatorcontrib><creatorcontrib>Savchenko, A V</creatorcontrib><title>Visual product recommendation using neural aggregation network and context gating</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</description><subject>Agglomeration</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Context</subject><subject>Physics</subject><subject>Recommender systems</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLxDAQhYMouK7-Bgu-CWtzadPsoyxeWVDx8hrSZFK67iY1aVH_vS2VFUFwXmbgnDMzfAgdE3xGsBApKTI64_mcp4RxkbIUM4oJ30GTrbK7nYXYRwcxrjBmfRUT9PBSx06tkyZ40-k2CaD9ZgPOqLb2Luli7arEQRd6j6qqANUoOGjffXhNlDOJ9q6FjzYZJFcdoj2r1hGOvvsUPV9ePC2uZ8u7q5vF-XKmGRV8xsoMa1HQXJUawGY4F1YZwW1GwDBaFhobmwEruVaCFUbrbG5xySkoYJTnbIpOxr39628dxFaufBdcf1LSnIssJ6IYXMXo0sHHGMDKJtQbFT4lwXLgJwcycqAkB36SyZFfn2RjsvbNz-r_U6d_pG7vF4-_jbIxln0BbnCBiQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Demochkin, K V</creator><creator>Savchenko, A V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Visual product recommendation using neural aggregation network and context gating</title><author>Demochkin, K V ; Savchenko, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3286-3b40c8725abceef4058fad86f41ed32b7c0df4e3b6ca837dcc49f0b62eae32653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Context</topic><topic>Physics</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demochkin, K V</creatorcontrib><creatorcontrib>Savchenko, A V</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demochkin, K V</au><au>Savchenko, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual product recommendation using neural aggregation network and context gating</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1368</volume><issue>3</issue><spage>32016</spage><pages>32016-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper we focus on the problem of user interests' classification in visual product recommender systems. We propose the two-stage procedure. At first, the visual features are learned by fine-tuning the convolutional neural network, e.g., MobileNet. At the second stage, we use such learnable pooling techniques as neural aggregation network and context gating in order to compute a weighted average of image features. As a result we can capture the relationships between the products images purchased by the same user. We provide an experimental study with the Amazon product dataset. It was shown that our approach achieves a F1-score of 0.90 for 15 recommendations, which is much higher when compared to 0.66 F1-measure classification of traditional averaging of the feature vector.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1368/3/032016</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-11, Vol.1368 (3), p.32016 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2568451875 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Agglomeration Artificial neural networks Classification Context Physics Recommender systems |
title | Visual product recommendation using neural aggregation network and context gating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20product%20recommendation%20using%20neural%20aggregation%20network%20and%20context%20gating&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Demochkin,%20K%20V&rft.date=2019-11-01&rft.volume=1368&rft.issue=3&rft.spage=32016&rft.pages=32016-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1368/3/032016&rft_dat=%3Cproquest_cross%3E2568451875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568451875&rft_id=info:pmid/&rfr_iscdi=true |