Development of Door Safety Fingerprint Verification using Neural Network

Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1373 (1), p.12053
Hauptverfasser: Yudhana, Anton, Sunardi, Priyatno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12053
container_title Journal of physics. Conference series
container_volume 1373
creator Yudhana, Anton
Sunardi
Priyatno
description Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.
doi_str_mv 10.1088/1742-6596/1373/1/012053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568439490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568439490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYJvQm3SpPnzKJvblKHC1NeQpol0bk1NW2Xf3pTKRBC8L_fCOede7g-AcwSvEOQ8QYykMc0ETRBmOEEJRCnM8AEY7ZXD_cz5MThpmjWEOBQbgcXUfJiNq7emaiNno6lzPlopa9pdNCurV-NrXwbpxfjSllq1pauirglKdG86rzahtZ_Ov52CI6s2jTn77mPwPLt5mizi5cP8dnK9jDVBuI1zpgVLORS5tUWhMOGEpwQTarFOGUEGIUEySonCQhdUsDy8w5AmaaFJTjAeg4thb-3de2eaVq5d56twUqYZ5QQLImBwscGlvWsab6wMb2yV30kEZY9N9kBkD0f22CSSA7aQxEOydPXP6v9Tl3-k7h4nq99GWRcWfwFNXHt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568439490</pqid></control><display><type>article</type><title>Development of Door Safety Fingerprint Verification using Neural Network</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yudhana, Anton ; Sunardi ; Priyatno</creator><creatorcontrib>Yudhana, Anton ; Sunardi ; Priyatno</creatorcontrib><description>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1373/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Fingerprint verification ; Fingerprinting ; Matlab ; Microcontrollers ; Neural networks ; Physics ; Safety ; Security systems ; Solenoids</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1373 (1), p.12053</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</citedby><cites>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1373/1/012053/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Yudhana, Anton</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Priyatno</creatorcontrib><title>Development of Door Safety Fingerprint Verification using Neural Network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</description><subject>Fingerprint verification</subject><subject>Fingerprinting</subject><subject>Matlab</subject><subject>Microcontrollers</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Safety</subject><subject>Security systems</subject><subject>Solenoids</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF9LwzAUxYMoOKefwYJvQm3SpPnzKJvblKHC1NeQpol0bk1NW2Xf3pTKRBC8L_fCOede7g-AcwSvEOQ8QYykMc0ETRBmOEEJRCnM8AEY7ZXD_cz5MThpmjWEOBQbgcXUfJiNq7emaiNno6lzPlopa9pdNCurV-NrXwbpxfjSllq1pauirglKdG86rzahtZ_Ov52CI6s2jTn77mPwPLt5mizi5cP8dnK9jDVBuI1zpgVLORS5tUWhMOGEpwQTarFOGUEGIUEySonCQhdUsDy8w5AmaaFJTjAeg4thb-3de2eaVq5d56twUqYZ5QQLImBwscGlvWsab6wMb2yV30kEZY9N9kBkD0f22CSSA7aQxEOydPXP6v9Tl3-k7h4nq99GWRcWfwFNXHt5</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yudhana, Anton</creator><creator>Sunardi</creator><creator>Priyatno</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Development of Door Safety Fingerprint Verification using Neural Network</title><author>Yudhana, Anton ; Sunardi ; Priyatno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fingerprint verification</topic><topic>Fingerprinting</topic><topic>Matlab</topic><topic>Microcontrollers</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Safety</topic><topic>Security systems</topic><topic>Solenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yudhana, Anton</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Priyatno</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yudhana, Anton</au><au>Sunardi</au><au>Priyatno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Door Safety Fingerprint Verification using Neural Network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1373</volume><issue>1</issue><spage>12053</spage><pages>12053-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1373/1/012053</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-11, Vol.1373 (1), p.12053
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2568439490
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Fingerprint verification
Fingerprinting
Matlab
Microcontrollers
Neural networks
Physics
Safety
Security systems
Solenoids
title Development of Door Safety Fingerprint Verification using Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Door%20Safety%20Fingerprint%20Verification%20using%20Neural%20Network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yudhana,%20Anton&rft.date=2019-11-01&rft.volume=1373&rft.issue=1&rft.spage=12053&rft.pages=12053-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1373/1/012053&rft_dat=%3Cproquest_cross%3E2568439490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568439490&rft_id=info:pmid/&rfr_iscdi=true