Development of Door Safety Fingerprint Verification using Neural Network
Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-11, Vol.1373 (1), p.12053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12053 |
container_title | Journal of physics. Conference series |
container_volume | 1373 |
creator | Yudhana, Anton Sunardi Priyatno |
description | Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful. |
doi_str_mv | 10.1088/1742-6596/1373/1/012053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568439490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568439490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYJvQm3SpPnzKJvblKHC1NeQpol0bk1NW2Xf3pTKRBC8L_fCOede7g-AcwSvEOQ8QYykMc0ETRBmOEEJRCnM8AEY7ZXD_cz5MThpmjWEOBQbgcXUfJiNq7emaiNno6lzPlopa9pdNCurV-NrXwbpxfjSllq1pauirglKdG86rzahtZ_Ov52CI6s2jTn77mPwPLt5mizi5cP8dnK9jDVBuI1zpgVLORS5tUWhMOGEpwQTarFOGUEGIUEySonCQhdUsDy8w5AmaaFJTjAeg4thb-3de2eaVq5d56twUqYZ5QQLImBwscGlvWsab6wMb2yV30kEZY9N9kBkD0f22CSSA7aQxEOydPXP6v9Tl3-k7h4nq99GWRcWfwFNXHt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568439490</pqid></control><display><type>article</type><title>Development of Door Safety Fingerprint Verification using Neural Network</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yudhana, Anton ; Sunardi ; Priyatno</creator><creatorcontrib>Yudhana, Anton ; Sunardi ; Priyatno</creatorcontrib><description>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1373/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Fingerprint verification ; Fingerprinting ; Matlab ; Microcontrollers ; Neural networks ; Physics ; Safety ; Security systems ; Solenoids</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1373 (1), p.12053</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</citedby><cites>FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1373/1/012053/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Yudhana, Anton</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Priyatno</creatorcontrib><title>Development of Door Safety Fingerprint Verification using Neural Network</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</description><subject>Fingerprint verification</subject><subject>Fingerprinting</subject><subject>Matlab</subject><subject>Microcontrollers</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Safety</subject><subject>Security systems</subject><subject>Solenoids</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF9LwzAUxYMoOKefwYJvQm3SpPnzKJvblKHC1NeQpol0bk1NW2Xf3pTKRBC8L_fCOede7g-AcwSvEOQ8QYykMc0ETRBmOEEJRCnM8AEY7ZXD_cz5MThpmjWEOBQbgcXUfJiNq7emaiNno6lzPlopa9pdNCurV-NrXwbpxfjSllq1pauirglKdG86rzahtZ_Ov52CI6s2jTn77mPwPLt5mizi5cP8dnK9jDVBuI1zpgVLORS5tUWhMOGEpwQTarFOGUEGIUEySonCQhdUsDy8w5AmaaFJTjAeg4thb-3de2eaVq5d56twUqYZ5QQLImBwscGlvWsab6wMb2yV30kEZY9N9kBkD0f22CSSA7aQxEOydPXP6v9Tl3-k7h4nq99GWRcWfwFNXHt5</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yudhana, Anton</creator><creator>Sunardi</creator><creator>Priyatno</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>Development of Door Safety Fingerprint Verification using Neural Network</title><author>Yudhana, Anton ; Sunardi ; Priyatno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-b7c972809bffdda3484824346f3c2741e11945664a39cd697b01271c42dc4b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fingerprint verification</topic><topic>Fingerprinting</topic><topic>Matlab</topic><topic>Microcontrollers</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Safety</topic><topic>Security systems</topic><topic>Solenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yudhana, Anton</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Priyatno</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yudhana, Anton</au><au>Sunardi</au><au>Priyatno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Door Safety Fingerprint Verification using Neural Network</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1373</volume><issue>1</issue><spage>12053</spage><pages>12053-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Fingerprints can be used as natural keys. The unique fingerprint of a human being is potential for the security system. This research develops the door safety fingerprint verification using Neural Network. The component used in this research is fingerprint C3 as input processed by Arduino Uno ATMega 2560. After a fingerprint scanning process is done, the microcontroller identifies the fingerprint image. From the microcontroller forwarded the relay module process with solenoid output. Arduino can be read by a computer using the Arduino IDE. Identification during registration via C3 sensor verified using the MATLAB application with the Neural Network method. The design created produces forward and backward solenoid motion, after being given an electric current between 5 to 12 Volts. The MATLAB application will verify the fingerprint image and display the image from the results of the verification done with the user. Research has been tested 10 times with various types of fingerprints with 100% verified so that this study was declared successful.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1373/1/012053</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-11, Vol.1373 (1), p.12053 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2568439490 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Fingerprint verification Fingerprinting Matlab Microcontrollers Neural networks Physics Safety Security systems Solenoids |
title | Development of Door Safety Fingerprint Verification using Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Door%20Safety%20Fingerprint%20Verification%20using%20Neural%20Network&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yudhana,%20Anton&rft.date=2019-11-01&rft.volume=1373&rft.issue=1&rft.spage=12053&rft.pages=12053-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1373/1/012053&rft_dat=%3Cproquest_cross%3E2568439490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568439490&rft_id=info:pmid/&rfr_iscdi=true |