An effective algorithm of the numerical solution to the Stefan problem

The method of the frontal interval of the numerical solution to Stefan problems is proposed. The method allows the calculation of the position of the phase transition boundary with high accuracy at any of time. Using the example of a plane two-phase Stefan problem, which has an exact analytical solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1392 (1), p.12034
Hauptverfasser: Kurbatova, Galina I., Ermolaeva, Nadezhda N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12034
container_title Journal of physics. Conference series
container_volume 1392
creator Kurbatova, Galina I.
Ermolaeva, Nadezhda N.
description The method of the frontal interval of the numerical solution to Stefan problems is proposed. The method allows the calculation of the position of the phase transition boundary with high accuracy at any of time. Using the example of a plane two-phase Stefan problem, which has an exact analytical solution, the advantages of the proposed method in comparison with a variable time stepping method are demonstrated with respect to the calculation of the position of the phase transition boundary. An example of the solution to the one-phase Stefan problem using the frontal interval method is also given.
doi_str_mv 10.1088/1742-6596/1392/1/012034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568317800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568317800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-88b15fc3d501fa6627d06fda83c0896054a3435aac626e6ba795b27721bdbc553</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5NJc-Lou7KgsKq88hTRO3S9vUtBX897ZWVgTBeZmBc2YO8wFwidENRlLGWCQk4izlMaYpiXGMMEE0OQKzg3J8mKU8BWdtu0eIDiVmYLWooXXOmq54t1CXrz4U3a6C3sFuZ2HdVzYURpew9WXfFb6Gnf9Stp11uoZN8Flpq3Nw4nTZ2ovvPgcvq9vn5V20eVzfLxebyFAik0jKDDNnaM4QdppzInLEXa4lNUimHLFE04QyrQ0n3PJMi5RlRAiCszwzjNE5uJruDrlvvW07tfd9qIdIRRiXFAs5vDYHYnKZ4Ns2WKeaUFQ6fCiM1AhNjTjUiEaN0BRWE7Rh83raLHzzc_rhabn9bVRN7gYz_cP8X8QnT8d62g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568317800</pqid></control><display><type>article</type><title>An effective algorithm of the numerical solution to the Stefan problem</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kurbatova, Galina I. ; Ermolaeva, Nadezhda N.</creator><creatorcontrib>Kurbatova, Galina I. ; Ermolaeva, Nadezhda N.</creatorcontrib><description>The method of the frontal interval of the numerical solution to Stefan problems is proposed. The method allows the calculation of the position of the phase transition boundary with high accuracy at any of time. Using the example of a plane two-phase Stefan problem, which has an exact analytical solution, the advantages of the proposed method in comparison with a variable time stepping method are demonstrated with respect to the calculation of the position of the phase transition boundary. An example of the solution to the one-phase Stefan problem using the frontal interval method is also given.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1392/1/012034</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Exact solutions ; Mathematical analysis ; Phase transitions ; Physics</subject><ispartof>Journal of physics. Conference series, 2019-11, Vol.1392 (1), p.12034</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-88b15fc3d501fa6627d06fda83c0896054a3435aac626e6ba795b27721bdbc553</citedby><cites>FETCH-LOGICAL-c3284-88b15fc3d501fa6627d06fda83c0896054a3435aac626e6ba795b27721bdbc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1392/1/012034/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Kurbatova, Galina I.</creatorcontrib><creatorcontrib>Ermolaeva, Nadezhda N.</creatorcontrib><title>An effective algorithm of the numerical solution to the Stefan problem</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The method of the frontal interval of the numerical solution to Stefan problems is proposed. The method allows the calculation of the position of the phase transition boundary with high accuracy at any of time. Using the example of a plane two-phase Stefan problem, which has an exact analytical solution, the advantages of the proposed method in comparison with a variable time stepping method are demonstrated with respect to the calculation of the position of the phase transition boundary. An example of the solution to the one-phase Stefan problem using the frontal interval method is also given.</description><subject>Algorithms</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Phase transitions</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5NJc-Lou7KgsKq88hTRO3S9vUtBX897ZWVgTBeZmBc2YO8wFwidENRlLGWCQk4izlMaYpiXGMMEE0OQKzg3J8mKU8BWdtu0eIDiVmYLWooXXOmq54t1CXrz4U3a6C3sFuZ2HdVzYURpew9WXfFb6Gnf9Stp11uoZN8Flpq3Nw4nTZ2ovvPgcvq9vn5V20eVzfLxebyFAik0jKDDNnaM4QdppzInLEXa4lNUimHLFE04QyrQ0n3PJMi5RlRAiCszwzjNE5uJruDrlvvW07tfd9qIdIRRiXFAs5vDYHYnKZ4Ns2WKeaUFQ6fCiM1AhNjTjUiEaN0BRWE7Rh83raLHzzc_rhabn9bVRN7gYz_cP8X8QnT8d62g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kurbatova, Galina I.</creator><creator>Ermolaeva, Nadezhda N.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191101</creationdate><title>An effective algorithm of the numerical solution to the Stefan problem</title><author>Kurbatova, Galina I. ; Ermolaeva, Nadezhda N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-88b15fc3d501fa6627d06fda83c0896054a3435aac626e6ba795b27721bdbc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Phase transitions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurbatova, Galina I.</creatorcontrib><creatorcontrib>Ermolaeva, Nadezhda N.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurbatova, Galina I.</au><au>Ermolaeva, Nadezhda N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective algorithm of the numerical solution to the Stefan problem</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>1392</volume><issue>1</issue><spage>12034</spage><pages>12034-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The method of the frontal interval of the numerical solution to Stefan problems is proposed. The method allows the calculation of the position of the phase transition boundary with high accuracy at any of time. Using the example of a plane two-phase Stefan problem, which has an exact analytical solution, the advantages of the proposed method in comparison with a variable time stepping method are demonstrated with respect to the calculation of the position of the phase transition boundary. An example of the solution to the one-phase Stefan problem using the frontal interval method is also given.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1392/1/012034</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-11, Vol.1392 (1), p.12034
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2568317800
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Exact solutions
Mathematical analysis
Phase transitions
Physics
title An effective algorithm of the numerical solution to the Stefan problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20algorithm%20of%20the%20numerical%20solution%20to%20the%20Stefan%20problem&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kurbatova,%20Galina%20I.&rft.date=2019-11-01&rft.volume=1392&rft.issue=1&rft.spage=12034&rft.pages=12034-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1392/1/012034&rft_dat=%3Cproquest_cross%3E2568317800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568317800&rft_id=info:pmid/&rfr_iscdi=true