Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization
The building sector is a major source of energy consumption mainly due to the use of Heat Ventilation and Air Conditioning (HVAC) systems, to achieve the indoor thermal comfort of occupants. To reach the optimal energy-efficient indoor temperature that satisfies thermal comfort, this paper describes...
Gespeichert in:
Veröffentlicht in: | Automation in construction 2021-09, Vol.129, p.103805, Article 103805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103805 |
container_title | Automation in construction |
container_volume | 129 |
creator | Zahid, Hamza Elmansoury, Oussama Yaagoubi, Reda |
description | The building sector is a major source of energy consumption mainly due to the use of Heat Ventilation and Air Conditioning (HVAC) systems, to achieve the indoor thermal comfort of occupants. To reach the optimal energy-efficient indoor temperature that satisfies thermal comfort, this paper describes an optimization approach named ‘DynamicPMV’ combining BIM (Building Information and Modeling) and IoT sensors (Internet of Things). This integration allows taking advantage of the geometric and parametric richness of BIM models and the real-time streaming of environmental data (humidity, temperature, etc.) collected by IoT sensors to optimize the indoor thermal comfort. First, the IoT measurements are interpolated according to a regular three-dimensional grid while considering inter-room heat exchanges using the parametric information of the BIM model. Then, DynamicPMV allows real-time 3D visualization of thermal comfort using the Predicted Mean Vote (PMV) index. Finally, the optimal temperature to ensure indoor thermal comfort is calculated.
•An approach for integrating BIM and IoT for thermal comfort optimization.•A prototype for an IoT device connected with a BIM model.•A real-time 3D dynamic visualization of thermal comfort.•Calculation of optimal temperature to ensure ideal indoor thermal comfort. |
doi_str_mv | 10.1016/j.autcon.2021.103805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568311016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926580521002569</els_id><sourcerecordid>2568311016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c770b785252ca84ad91cb709968380c44e5d0d43c2db81ca65c793926af4d40a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pxiOw8nHJDKu1IrOBSulrt2qKPGDo6LVH49jsKZ00qj2dmdD6FLSmaU0OK6mcl9AGdnjDAapbQk-RGa0JKzhJcVPUYTUrEiyaN-is76viGEcFJUEwQPBytbA_jNa2UgaIVXWlr84YK-wXOLF26d3C1W2NigP70cDLLrvJOwxbXzUVcujrDVvpU7DK6NasCuC6Y1PzIYZ8_RSS13vb74m1P0_vS4vn9Jlq_Pi_v5MoE0zUICnJMNL3OWM5BlJlVFYcNJVRVlLARZpnNFVJYCU5uSgixy4FUae8k6UxmR6RRdjbnxva-97oNo3N7beFKwPIbQAVZ0ZaMLvOt7r2vRedNKfxCUiMEhGjHiFANOMeKMa7fjmo4Nvo32ogejLURqXkMQypn_A34Bn0Z_eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568311016</pqid></control><display><type>article</type><title>Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Zahid, Hamza ; Elmansoury, Oussama ; Yaagoubi, Reda</creator><creatorcontrib>Zahid, Hamza ; Elmansoury, Oussama ; Yaagoubi, Reda</creatorcontrib><description>The building sector is a major source of energy consumption mainly due to the use of Heat Ventilation and Air Conditioning (HVAC) systems, to achieve the indoor thermal comfort of occupants. To reach the optimal energy-efficient indoor temperature that satisfies thermal comfort, this paper describes an optimization approach named ‘DynamicPMV’ combining BIM (Building Information and Modeling) and IoT sensors (Internet of Things). This integration allows taking advantage of the geometric and parametric richness of BIM models and the real-time streaming of environmental data (humidity, temperature, etc.) collected by IoT sensors to optimize the indoor thermal comfort. First, the IoT measurements are interpolated according to a regular three-dimensional grid while considering inter-room heat exchanges using the parametric information of the BIM model. Then, DynamicPMV allows real-time 3D visualization of thermal comfort using the Predicted Mean Vote (PMV) index. Finally, the optimal temperature to ensure indoor thermal comfort is calculated.
•An approach for integrating BIM and IoT for thermal comfort optimization.•A prototype for an IoT device connected with a BIM model.•A real-time 3D dynamic visualization of thermal comfort.•Calculation of optimal temperature to ensure ideal indoor thermal comfort.</description><identifier>ISSN: 0926-5805</identifier><identifier>EISSN: 1872-7891</identifier><identifier>DOI: 10.1016/j.autcon.2021.103805</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air conditioning ; Arduino ; BIM ; Building management systems ; Energy consumption ; Heat exchange ; Internet of Things ; IoT ; Optimization ; PMV ; Predicted Mean Vote index ; Real time ; Revit ; Sensors ; Thermal comfort</subject><ispartof>Automation in construction, 2021-09, Vol.129, p.103805, Article 103805</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c770b785252ca84ad91cb709968380c44e5d0d43c2db81ca65c793926af4d40a3</citedby><cites>FETCH-LOGICAL-c334t-c770b785252ca84ad91cb709968380c44e5d0d43c2db81ca65c793926af4d40a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926580521002569$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zahid, Hamza</creatorcontrib><creatorcontrib>Elmansoury, Oussama</creatorcontrib><creatorcontrib>Yaagoubi, Reda</creatorcontrib><title>Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization</title><title>Automation in construction</title><description>The building sector is a major source of energy consumption mainly due to the use of Heat Ventilation and Air Conditioning (HVAC) systems, to achieve the indoor thermal comfort of occupants. To reach the optimal energy-efficient indoor temperature that satisfies thermal comfort, this paper describes an optimization approach named ‘DynamicPMV’ combining BIM (Building Information and Modeling) and IoT sensors (Internet of Things). This integration allows taking advantage of the geometric and parametric richness of BIM models and the real-time streaming of environmental data (humidity, temperature, etc.) collected by IoT sensors to optimize the indoor thermal comfort. First, the IoT measurements are interpolated according to a regular three-dimensional grid while considering inter-room heat exchanges using the parametric information of the BIM model. Then, DynamicPMV allows real-time 3D visualization of thermal comfort using the Predicted Mean Vote (PMV) index. Finally, the optimal temperature to ensure indoor thermal comfort is calculated.
•An approach for integrating BIM and IoT for thermal comfort optimization.•A prototype for an IoT device connected with a BIM model.•A real-time 3D dynamic visualization of thermal comfort.•Calculation of optimal temperature to ensure ideal indoor thermal comfort.</description><subject>Air conditioning</subject><subject>Arduino</subject><subject>BIM</subject><subject>Building management systems</subject><subject>Energy consumption</subject><subject>Heat exchange</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Optimization</subject><subject>PMV</subject><subject>Predicted Mean Vote index</subject><subject>Real time</subject><subject>Revit</subject><subject>Sensors</subject><subject>Thermal comfort</subject><issn>0926-5805</issn><issn>1872-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pxiOw8nHJDKu1IrOBSulrt2qKPGDo6LVH49jsKZ00qj2dmdD6FLSmaU0OK6mcl9AGdnjDAapbQk-RGa0JKzhJcVPUYTUrEiyaN-is76viGEcFJUEwQPBytbA_jNa2UgaIVXWlr84YK-wXOLF26d3C1W2NigP70cDLLrvJOwxbXzUVcujrDVvpU7DK6NasCuC6Y1PzIYZ8_RSS13vb74m1P0_vS4vn9Jlq_Pi_v5MoE0zUICnJMNL3OWM5BlJlVFYcNJVRVlLARZpnNFVJYCU5uSgixy4FUae8k6UxmR6RRdjbnxva-97oNo3N7beFKwPIbQAVZ0ZaMLvOt7r2vRedNKfxCUiMEhGjHiFANOMeKMa7fjmo4Nvo32ogejLURqXkMQypn_A34Bn0Z_eQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Zahid, Hamza</creator><creator>Elmansoury, Oussama</creator><creator>Yaagoubi, Reda</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202109</creationdate><title>Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization</title><author>Zahid, Hamza ; Elmansoury, Oussama ; Yaagoubi, Reda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c770b785252ca84ad91cb709968380c44e5d0d43c2db81ca65c793926af4d40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air conditioning</topic><topic>Arduino</topic><topic>BIM</topic><topic>Building management systems</topic><topic>Energy consumption</topic><topic>Heat exchange</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Optimization</topic><topic>PMV</topic><topic>Predicted Mean Vote index</topic><topic>Real time</topic><topic>Revit</topic><topic>Sensors</topic><topic>Thermal comfort</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahid, Hamza</creatorcontrib><creatorcontrib>Elmansoury, Oussama</creatorcontrib><creatorcontrib>Yaagoubi, Reda</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation in construction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahid, Hamza</au><au>Elmansoury, Oussama</au><au>Yaagoubi, Reda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization</atitle><jtitle>Automation in construction</jtitle><date>2021-09</date><risdate>2021</risdate><volume>129</volume><spage>103805</spage><pages>103805-</pages><artnum>103805</artnum><issn>0926-5805</issn><eissn>1872-7891</eissn><abstract>The building sector is a major source of energy consumption mainly due to the use of Heat Ventilation and Air Conditioning (HVAC) systems, to achieve the indoor thermal comfort of occupants. To reach the optimal energy-efficient indoor temperature that satisfies thermal comfort, this paper describes an optimization approach named ‘DynamicPMV’ combining BIM (Building Information and Modeling) and IoT sensors (Internet of Things). This integration allows taking advantage of the geometric and parametric richness of BIM models and the real-time streaming of environmental data (humidity, temperature, etc.) collected by IoT sensors to optimize the indoor thermal comfort. First, the IoT measurements are interpolated according to a regular three-dimensional grid while considering inter-room heat exchanges using the parametric information of the BIM model. Then, DynamicPMV allows real-time 3D visualization of thermal comfort using the Predicted Mean Vote (PMV) index. Finally, the optimal temperature to ensure indoor thermal comfort is calculated.
•An approach for integrating BIM and IoT for thermal comfort optimization.•A prototype for an IoT device connected with a BIM model.•A real-time 3D dynamic visualization of thermal comfort.•Calculation of optimal temperature to ensure ideal indoor thermal comfort.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.autcon.2021.103805</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-5805 |
ispartof | Automation in construction, 2021-09, Vol.129, p.103805, Article 103805 |
issn | 0926-5805 1872-7891 |
language | eng |
recordid | cdi_proquest_journals_2568311016 |
source | Elsevier ScienceDirect Journals |
subjects | Air conditioning Arduino BIM Building management systems Energy consumption Heat exchange Internet of Things IoT Optimization PMV Predicted Mean Vote index Real time Revit Sensors Thermal comfort |
title | Dynamic Predicted Mean Vote: An IoT-BIM integrated approach for indoor thermal comfort optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Predicted%20Mean%20Vote:%20An%20IoT-BIM%20integrated%20approach%20for%20indoor%20thermal%20comfort%20optimization&rft.jtitle=Automation%20in%20construction&rft.au=Zahid,%20Hamza&rft.date=2021-09&rft.volume=129&rft.spage=103805&rft.pages=103805-&rft.artnum=103805&rft.issn=0926-5805&rft.eissn=1872-7891&rft_id=info:doi/10.1016/j.autcon.2021.103805&rft_dat=%3Cproquest_cross%3E2568311016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568311016&rft_id=info:pmid/&rft_els_id=S0926580521002569&rfr_iscdi=true |