Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation

Given that energy-efficiency policies focus on meso- or macro-scale interventions, it is imperative to establish a macro-scale evaluation approach for building retrofits to support policymaking in building energy conservation, management and sustainability. This study applies the generic idea of opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2021-09, Vol.243, p.114327, Article 114327
Hauptverfasser: Hong, Y., Ezeh, Collins I., Deng, W., Hong, S-H., Ma, Y., Tang, Y., Jin, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114327
container_title Energy conversion and management
container_volume 243
creator Hong, Y.
Ezeh, Collins I.
Deng, W.
Hong, S-H.
Ma, Y.
Tang, Y.
Jin, Y.
description Given that energy-efficiency policies focus on meso- or macro-scale interventions, it is imperative to establish a macro-scale evaluation approach for building retrofits to support policymaking in building energy conservation, management and sustainability. This study applies the generic idea of optimising the energy, economic and environmental outputs to propose a facile framework for evaluating the prospects of building retrofits on a macro-scale. Here, an extensive optimisation approach integratinglife cycle cost evaluation and an environmental assessment is formulated, involving coordinated on-site survey, modelling and data analytics. The model framework is corroborated by a case study analysis focused on identifying the optimal retrofit solution for low-rise office buildings in Shanghai. Simulation results show that modifications in occupancy regime, improvements in natural ventilation, heating and cooling systems, cool roofs insulation and installation of renewable energy systems (such as geothermal and solar/photovoltaics) are the basic retrofit measures for a macro-scale intervention to attain maximum life-cycle benefits. Individually, an estimated investment cost for each retrofit project varied within RMB 1 – 5 million with a payback period 
doi_str_mv 10.1016/j.enconman.2021.114327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568306506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421005033</els_id><sourcerecordid>2568306506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-ae0c6552f37481025dec2e5aeda495e8e936d91f943c872142b7edee23d0783d3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWKt_QQKuU_OYR8aVpfgCwY2uQ5rckZRpUpO00H_jTzV16tpVIJzz3XvuQeia0RmjrLldzcCb4NfazzjlbMZYJXh7giZMth3hnLenaEJZ1xDZ0eocXaS0opSKmjYT9L0IIVrndQaLwUP83BPwOxcLEHzWA4HCDmtncNhkt3ZJZxc8Dj1ebt1QnJ84Qo6hdznhPsRRpocjDG8glt-ynAFcfBqvtYmBJKMHuMNzPLgeiNmbAbAJKZOlTodNdnrY_k66RGe9HhJcHd8p-nh8eF88k9e3p5fF_JUYIWUmGqhp6pr3oq0ko7y2YDjUGqyuuhokdKKxHeu7ShjZclbxZQsWgAtLWymsmKKbkbuJ4WsLKatV2EZfRipeN1LQptyrqJpRVTKkFKFXm1jSxr1iVB3aUCv114Y6tKHGNorxfjRCybBzEFUyrijBuggmKxvcf4gfCSGazg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568306506</pqid></control><display><type>article</type><title>Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hong, Y. ; Ezeh, Collins I. ; Deng, W. ; Hong, S-H. ; Ma, Y. ; Tang, Y. ; Jin, Y.</creator><creatorcontrib>Hong, Y. ; Ezeh, Collins I. ; Deng, W. ; Hong, S-H. ; Ma, Y. ; Tang, Y. ; Jin, Y.</creatorcontrib><description>Given that energy-efficiency policies focus on meso- or macro-scale interventions, it is imperative to establish a macro-scale evaluation approach for building retrofits to support policymaking in building energy conservation, management and sustainability. This study applies the generic idea of optimising the energy, economic and environmental outputs to propose a facile framework for evaluating the prospects of building retrofits on a macro-scale. Here, an extensive optimisation approach integratinglife cycle cost evaluation and an environmental assessment is formulated, involving coordinated on-site survey, modelling and data analytics. The model framework is corroborated by a case study analysis focused on identifying the optimal retrofit solution for low-rise office buildings in Shanghai. Simulation results show that modifications in occupancy regime, improvements in natural ventilation, heating and cooling systems, cool roofs insulation and installation of renewable energy systems (such as geothermal and solar/photovoltaics) are the basic retrofit measures for a macro-scale intervention to attain maximum life-cycle benefits. Individually, an estimated investment cost for each retrofit project varied within RMB 1 – 5 million with a payback period &lt; 13 years, depending on the building characteristics. Overall, an investment estimated at RMB 1.7 billion (with a payback period of 6 years) is required to achieve ~ 80% energy reduction with a carbon dioxide savings of ~ 243 Gg-CO2/yr. In summary, this study provides a guidance framework for stakeholders to evaluate investments on retrofit projects, including existing and prospective ones.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.114327</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon dioxide ; Cooling systems ; Cost control ; Energy ; Energy conservation ; Energy policy ; Environmental assessment ; Insulation ; Life cycle analysis ; Life cycle assessment ; Life cycle costs ; Life cycles ; Life-cycle cost analysis ; Low-rise ; Occupancy ; Office buildings ; Optimization ; Payback periods ; Photovoltaic cells ; Photovoltaics ; Renewable energy ; Retrofit measures ; Retrofitting ; Shanghai ; Sustainability</subject><ispartof>Energy conversion and management, 2021-09, Vol.243, p.114327, Article 114327</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-ae0c6552f37481025dec2e5aeda495e8e936d91f943c872142b7edee23d0783d3</citedby><cites>FETCH-LOGICAL-c388t-ae0c6552f37481025dec2e5aeda495e8e936d91f943c872142b7edee23d0783d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2021.114327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Hong, Y.</creatorcontrib><creatorcontrib>Ezeh, Collins I.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Hong, S-H.</creatorcontrib><creatorcontrib>Ma, Y.</creatorcontrib><creatorcontrib>Tang, Y.</creatorcontrib><creatorcontrib>Jin, Y.</creatorcontrib><title>Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation</title><title>Energy conversion and management</title><description>Given that energy-efficiency policies focus on meso- or macro-scale interventions, it is imperative to establish a macro-scale evaluation approach for building retrofits to support policymaking in building energy conservation, management and sustainability. This study applies the generic idea of optimising the energy, economic and environmental outputs to propose a facile framework for evaluating the prospects of building retrofits on a macro-scale. Here, an extensive optimisation approach integratinglife cycle cost evaluation and an environmental assessment is formulated, involving coordinated on-site survey, modelling and data analytics. The model framework is corroborated by a case study analysis focused on identifying the optimal retrofit solution for low-rise office buildings in Shanghai. Simulation results show that modifications in occupancy regime, improvements in natural ventilation, heating and cooling systems, cool roofs insulation and installation of renewable energy systems (such as geothermal and solar/photovoltaics) are the basic retrofit measures for a macro-scale intervention to attain maximum life-cycle benefits. Individually, an estimated investment cost for each retrofit project varied within RMB 1 – 5 million with a payback period &lt; 13 years, depending on the building characteristics. Overall, an investment estimated at RMB 1.7 billion (with a payback period of 6 years) is required to achieve ~ 80% energy reduction with a carbon dioxide savings of ~ 243 Gg-CO2/yr. In summary, this study provides a guidance framework for stakeholders to evaluate investments on retrofit projects, including existing and prospective ones.</description><subject>Carbon dioxide</subject><subject>Cooling systems</subject><subject>Cost control</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy policy</subject><subject>Environmental assessment</subject><subject>Insulation</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycle costs</subject><subject>Life cycles</subject><subject>Life-cycle cost analysis</subject><subject>Low-rise</subject><subject>Occupancy</subject><subject>Office buildings</subject><subject>Optimization</subject><subject>Payback periods</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Renewable energy</subject><subject>Retrofit measures</subject><subject>Retrofitting</subject><subject>Shanghai</subject><subject>Sustainability</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEUhYMoWKt_QQKuU_OYR8aVpfgCwY2uQ5rckZRpUpO00H_jTzV16tpVIJzz3XvuQeia0RmjrLldzcCb4NfazzjlbMZYJXh7giZMth3hnLenaEJZ1xDZ0eocXaS0opSKmjYT9L0IIVrndQaLwUP83BPwOxcLEHzWA4HCDmtncNhkt3ZJZxc8Dj1ebt1QnJ84Qo6hdznhPsRRpocjDG8glt-ynAFcfBqvtYmBJKMHuMNzPLgeiNmbAbAJKZOlTodNdnrY_k66RGe9HhJcHd8p-nh8eF88k9e3p5fF_JUYIWUmGqhp6pr3oq0ko7y2YDjUGqyuuhokdKKxHeu7ShjZclbxZQsWgAtLWymsmKKbkbuJ4WsLKatV2EZfRipeN1LQptyrqJpRVTKkFKFXm1jSxr1iVB3aUCv114Y6tKHGNorxfjRCybBzEFUyrijBuggmKxvcf4gfCSGazg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hong, Y.</creator><creator>Ezeh, Collins I.</creator><creator>Deng, W.</creator><creator>Hong, S-H.</creator><creator>Ma, Y.</creator><creator>Tang, Y.</creator><creator>Jin, Y.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210901</creationdate><title>Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation</title><author>Hong, Y. ; Ezeh, Collins I. ; Deng, W. ; Hong, S-H. ; Ma, Y. ; Tang, Y. ; Jin, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-ae0c6552f37481025dec2e5aeda495e8e936d91f943c872142b7edee23d0783d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Cooling systems</topic><topic>Cost control</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy policy</topic><topic>Environmental assessment</topic><topic>Insulation</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycle costs</topic><topic>Life cycles</topic><topic>Life-cycle cost analysis</topic><topic>Low-rise</topic><topic>Occupancy</topic><topic>Office buildings</topic><topic>Optimization</topic><topic>Payback periods</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Renewable energy</topic><topic>Retrofit measures</topic><topic>Retrofitting</topic><topic>Shanghai</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Y.</creatorcontrib><creatorcontrib>Ezeh, Collins I.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Hong, S-H.</creatorcontrib><creatorcontrib>Ma, Y.</creatorcontrib><creatorcontrib>Tang, Y.</creatorcontrib><creatorcontrib>Jin, Y.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Y.</au><au>Ezeh, Collins I.</au><au>Deng, W.</au><au>Hong, S-H.</au><au>Ma, Y.</au><au>Tang, Y.</au><au>Jin, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation</atitle><jtitle>Energy conversion and management</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>243</volume><spage>114327</spage><pages>114327-</pages><artnum>114327</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>Given that energy-efficiency policies focus on meso- or macro-scale interventions, it is imperative to establish a macro-scale evaluation approach for building retrofits to support policymaking in building energy conservation, management and sustainability. This study applies the generic idea of optimising the energy, economic and environmental outputs to propose a facile framework for evaluating the prospects of building retrofits on a macro-scale. Here, an extensive optimisation approach integratinglife cycle cost evaluation and an environmental assessment is formulated, involving coordinated on-site survey, modelling and data analytics. The model framework is corroborated by a case study analysis focused on identifying the optimal retrofit solution for low-rise office buildings in Shanghai. Simulation results show that modifications in occupancy regime, improvements in natural ventilation, heating and cooling systems, cool roofs insulation and installation of renewable energy systems (such as geothermal and solar/photovoltaics) are the basic retrofit measures for a macro-scale intervention to attain maximum life-cycle benefits. Individually, an estimated investment cost for each retrofit project varied within RMB 1 – 5 million with a payback period &lt; 13 years, depending on the building characteristics. Overall, an investment estimated at RMB 1.7 billion (with a payback period of 6 years) is required to achieve ~ 80% energy reduction with a carbon dioxide savings of ~ 243 Gg-CO2/yr. In summary, this study provides a guidance framework for stakeholders to evaluate investments on retrofit projects, including existing and prospective ones.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.114327</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2021-09, Vol.243, p.114327, Article 114327
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2568306506
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Cooling systems
Cost control
Energy
Energy conservation
Energy policy
Environmental assessment
Insulation
Life cycle analysis
Life cycle assessment
Life cycle costs
Life cycles
Life-cycle cost analysis
Low-rise
Occupancy
Office buildings
Optimization
Payback periods
Photovoltaic cells
Photovoltaics
Renewable energy
Retrofit measures
Retrofitting
Shanghai
Sustainability
title Coordinated energy-environmental-economic optimisation of building retrofits for optimal energy performance on a macro-scale: A life-cycle cost-based evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20energy-environmental-economic%20optimisation%20of%20building%20retrofits%20for%20optimal%20energy%20performance%20on%20a%20macro-scale:%20A%20life-cycle%20cost-based%20evaluation&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Hong,%20Y.&rft.date=2021-09-01&rft.volume=243&rft.spage=114327&rft.pages=114327-&rft.artnum=114327&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.114327&rft_dat=%3Cproquest_cross%3E2568306506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568306506&rft_id=info:pmid/&rft_els_id=S0196890421005033&rfr_iscdi=true