Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations

Carbon dioxide capture and storage is an efficient technology to reduce CO2. Among CO2 storage methods, storage in the form of gas hydrate is thought to be promising for increasing the volume capacity of storable CO2. Microscopic hydrate distribution within the pore space of sand sediment essentiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of MMIJ 2021/08/31, Vol.137(8), pp.79-90
Hauptverfasser: NONO, yumu, YAMAGUCHI, Alan Junji, SATO, Toru, FUJI, Tatsuya, TOBASE, Takaomi
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 8
container_start_page 79
container_title Journal of MMIJ
container_volume 137
creator NONO, yumu
YAMAGUCHI, Alan Junji
SATO, Toru
FUJI, Tatsuya
TOBASE, Takaomi
description Carbon dioxide capture and storage is an efficient technology to reduce CO2. Among CO2 storage methods, storage in the form of gas hydrate is thought to be promising for increasing the volume capacity of storable CO2. Microscopic hydrate distribution within the pore space of sand sediment essentially controls its effective permeability coefficient. This study aimed to make a mathematical model of the effective permeability coefficient, using microscopic numerical method series that consists of packing sand grains within microscopic computational domains, arranging water and CO2 phases in the pore space of the packed sand grains, placing multiple hydrate nuclei, growing hydrate in the pores of the sand grains, and simulating single phase flow through the pore space of the packed sand grain and the formed hydrate, regarding the hydrate as a solid. The effect of heat diffusion on the reservoir scale is newly incorporated into the simulation method to continue the hydrate growth to high hydrate saturation. The computational results indicated the effects of hydrate distribution in the pore space on hydrate saturations, initial water saturations, and contact angles of water on the sand surface. Then, based on the results of the simulations, the effective permeability coefficient was modelled based on the Kozeny-Carman model, using simple polynomial equations.
doi_str_mv 10.2473/journalofmmij.137.79
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2568305449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568305449</sourcerecordid><originalsourceid>FETCH-LOGICAL-j939-651457ead08c19cab06e89a6e7a89f26c01cc828593c56f6664a64aa20c339363</originalsourceid><addsrcrecordid>eNpVkN1KxDAQhYso-PsGXgS87po0bZpcSlFXWN2F1esym040pW00SYU-gy_t7iqCMMyci2_OgZMkl4zOsrzk160b_QCdM31v2xnj5axUB8kJkzJPaV7Qw71mqWBMHienIbSUCkULeZJ8PboGu84Or8QZcmsM6mg_kazQ9wgb29k4kcqhMVZbHCKpYAzYkM1E4huSO-d7iNYNu-9qmZH51HiISOxA1jA0ZAETevISdgEr5zFda-iQPI09eruVZG37sdtbhPPkyEAX8OL3niXPd7fP1TxdLO8fqptF2iquUlGwvCgRGio1Uxo2VKBUILAEqUwmNGVay0wWiutCGCFEDtuBjGrOFRf8LLn6sX337mPEEOvf_kKdFUJyWuS52lLzH6oNEV6xfve2Bz_V4KPVHdb_Oq-3nddyv0v1h-g38DUO_Bu9AINc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568305449</pqid></control><display><type>article</type><title>Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations</title><source>Directory of Open Access Journals(OpenAccess)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>J-STAGE</source><creator>NONO, yumu ; YAMAGUCHI, Alan Junji ; SATO, Toru ; FUJI, Tatsuya ; TOBASE, Takaomi</creator><creatorcontrib>NONO, yumu ; YAMAGUCHI, Alan Junji ; SATO, Toru ; FUJI, Tatsuya ; TOBASE, Takaomi</creatorcontrib><description>Carbon dioxide capture and storage is an efficient technology to reduce CO2. Among CO2 storage methods, storage in the form of gas hydrate is thought to be promising for increasing the volume capacity of storable CO2. Microscopic hydrate distribution within the pore space of sand sediment essentially controls its effective permeability coefficient. This study aimed to make a mathematical model of the effective permeability coefficient, using microscopic numerical method series that consists of packing sand grains within microscopic computational domains, arranging water and CO2 phases in the pore space of the packed sand grains, placing multiple hydrate nuclei, growing hydrate in the pores of the sand grains, and simulating single phase flow through the pore space of the packed sand grain and the formed hydrate, regarding the hydrate as a solid. The effect of heat diffusion on the reservoir scale is newly incorporated into the simulation method to continue the hydrate growth to high hydrate saturation. The computational results indicated the effects of hydrate distribution in the pore space on hydrate saturations, initial water saturations, and contact angles of water on the sand surface. Then, based on the results of the simulations, the effective permeability coefficient was modelled based on the Kozeny-Carman model, using simple polynomial equations.</description><identifier>ISSN: 1881-6118</identifier><identifier>EISSN: 1884-0450</identifier><identifier>DOI: 10.2473/journalofmmij.137.79</identifier><language>jpn</language><publisher>Tokyo: The Mining and Materials Processing Institute of Japan</publisher><subject>Capture and Storage(CCS) ; Carbon dioxide ; Carbon sequestration ; CO2 Hydrate ; Coefficients ; Contact angle ; Diffusion effects ; Effective Permeability Coefficient ; Gas hydrates ; Grains ; Kozeny-Carman model, Carbon Dioxide ; Lattice Boltzmann Method ; Mathematical analysis ; Mathematical models ; Numerical methods ; Permeability ; Phase-Field Method ; Polynomials ; Pore-Scale Sand Layer ; Sand ; Simulation ; Single-phase flow</subject><ispartof>Journal of MMIJ, 2021/08/31, Vol.137(8), pp.79-90</ispartof><rights>2021 The Mining and Materials Processing Institute of Japan</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>NONO, yumu</creatorcontrib><creatorcontrib>YAMAGUCHI, Alan Junji</creatorcontrib><creatorcontrib>SATO, Toru</creatorcontrib><creatorcontrib>FUJI, Tatsuya</creatorcontrib><creatorcontrib>TOBASE, Takaomi</creatorcontrib><title>Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations</title><title>Journal of MMIJ</title><addtitle>J.MMIJ</addtitle><description>Carbon dioxide capture and storage is an efficient technology to reduce CO2. Among CO2 storage methods, storage in the form of gas hydrate is thought to be promising for increasing the volume capacity of storable CO2. Microscopic hydrate distribution within the pore space of sand sediment essentially controls its effective permeability coefficient. This study aimed to make a mathematical model of the effective permeability coefficient, using microscopic numerical method series that consists of packing sand grains within microscopic computational domains, arranging water and CO2 phases in the pore space of the packed sand grains, placing multiple hydrate nuclei, growing hydrate in the pores of the sand grains, and simulating single phase flow through the pore space of the packed sand grain and the formed hydrate, regarding the hydrate as a solid. The effect of heat diffusion on the reservoir scale is newly incorporated into the simulation method to continue the hydrate growth to high hydrate saturation. The computational results indicated the effects of hydrate distribution in the pore space on hydrate saturations, initial water saturations, and contact angles of water on the sand surface. Then, based on the results of the simulations, the effective permeability coefficient was modelled based on the Kozeny-Carman model, using simple polynomial equations.</description><subject>Capture and Storage(CCS)</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>CO2 Hydrate</subject><subject>Coefficients</subject><subject>Contact angle</subject><subject>Diffusion effects</subject><subject>Effective Permeability Coefficient</subject><subject>Gas hydrates</subject><subject>Grains</subject><subject>Kozeny-Carman model, Carbon Dioxide</subject><subject>Lattice Boltzmann Method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Permeability</subject><subject>Phase-Field Method</subject><subject>Polynomials</subject><subject>Pore-Scale Sand Layer</subject><subject>Sand</subject><subject>Simulation</subject><subject>Single-phase flow</subject><issn>1881-6118</issn><issn>1884-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkN1KxDAQhYso-PsGXgS87po0bZpcSlFXWN2F1esym040pW00SYU-gy_t7iqCMMyci2_OgZMkl4zOsrzk160b_QCdM31v2xnj5axUB8kJkzJPaV7Qw71mqWBMHienIbSUCkULeZJ8PboGu84Or8QZcmsM6mg_kazQ9wgb29k4kcqhMVZbHCKpYAzYkM1E4huSO-d7iNYNu-9qmZH51HiISOxA1jA0ZAETevISdgEr5zFda-iQPI09eruVZG37sdtbhPPkyEAX8OL3niXPd7fP1TxdLO8fqptF2iquUlGwvCgRGio1Uxo2VKBUILAEqUwmNGVay0wWiutCGCFEDtuBjGrOFRf8LLn6sX337mPEEOvf_kKdFUJyWuS52lLzH6oNEV6xfve2Bz_V4KPVHdb_Oq-3nddyv0v1h-g38DUO_Bu9AINc</recordid><startdate>20210831</startdate><enddate>20210831</enddate><creator>NONO, yumu</creator><creator>YAMAGUCHI, Alan Junji</creator><creator>SATO, Toru</creator><creator>FUJI, Tatsuya</creator><creator>TOBASE, Takaomi</creator><general>The Mining and Materials Processing Institute of Japan</general><general>Japan Science and Technology Agency</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210831</creationdate><title>Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations</title><author>NONO, yumu ; YAMAGUCHI, Alan Junji ; SATO, Toru ; FUJI, Tatsuya ; TOBASE, Takaomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j939-651457ead08c19cab06e89a6e7a89f26c01cc828593c56f6664a64aa20c339363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2021</creationdate><topic>Capture and Storage(CCS)</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>CO2 Hydrate</topic><topic>Coefficients</topic><topic>Contact angle</topic><topic>Diffusion effects</topic><topic>Effective Permeability Coefficient</topic><topic>Gas hydrates</topic><topic>Grains</topic><topic>Kozeny-Carman model, Carbon Dioxide</topic><topic>Lattice Boltzmann Method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Permeability</topic><topic>Phase-Field Method</topic><topic>Polynomials</topic><topic>Pore-Scale Sand Layer</topic><topic>Sand</topic><topic>Simulation</topic><topic>Single-phase flow</topic><toplevel>online_resources</toplevel><creatorcontrib>NONO, yumu</creatorcontrib><creatorcontrib>YAMAGUCHI, Alan Junji</creatorcontrib><creatorcontrib>SATO, Toru</creatorcontrib><creatorcontrib>FUJI, Tatsuya</creatorcontrib><creatorcontrib>TOBASE, Takaomi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of MMIJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NONO, yumu</au><au>YAMAGUCHI, Alan Junji</au><au>SATO, Toru</au><au>FUJI, Tatsuya</au><au>TOBASE, Takaomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations</atitle><jtitle>Journal of MMIJ</jtitle><addtitle>J.MMIJ</addtitle><date>2021-08-31</date><risdate>2021</risdate><volume>137</volume><issue>8</issue><spage>79</spage><epage>90</epage><pages>79-90</pages><issn>1881-6118</issn><eissn>1884-0450</eissn><abstract>Carbon dioxide capture and storage is an efficient technology to reduce CO2. Among CO2 storage methods, storage in the form of gas hydrate is thought to be promising for increasing the volume capacity of storable CO2. Microscopic hydrate distribution within the pore space of sand sediment essentially controls its effective permeability coefficient. This study aimed to make a mathematical model of the effective permeability coefficient, using microscopic numerical method series that consists of packing sand grains within microscopic computational domains, arranging water and CO2 phases in the pore space of the packed sand grains, placing multiple hydrate nuclei, growing hydrate in the pores of the sand grains, and simulating single phase flow through the pore space of the packed sand grain and the formed hydrate, regarding the hydrate as a solid. The effect of heat diffusion on the reservoir scale is newly incorporated into the simulation method to continue the hydrate growth to high hydrate saturation. The computational results indicated the effects of hydrate distribution in the pore space on hydrate saturations, initial water saturations, and contact angles of water on the sand surface. Then, based on the results of the simulations, the effective permeability coefficient was modelled based on the Kozeny-Carman model, using simple polynomial equations.</abstract><cop>Tokyo</cop><pub>The Mining and Materials Processing Institute of Japan</pub><doi>10.2473/journalofmmij.137.79</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1881-6118
ispartof Journal of MMIJ, 2021/08/31, Vol.137(8), pp.79-90
issn 1881-6118
1884-0450
language jpn
recordid cdi_proquest_journals_2568305449
source Directory of Open Access Journals(OpenAccess); EZB-FREE-00999 freely available EZB journals; J-STAGE
subjects Capture and Storage(CCS)
Carbon dioxide
Carbon sequestration
CO2 Hydrate
Coefficients
Contact angle
Diffusion effects
Effective Permeability Coefficient
Gas hydrates
Grains
Kozeny-Carman model, Carbon Dioxide
Lattice Boltzmann Method
Mathematical analysis
Mathematical models
Numerical methods
Permeability
Phase-Field Method
Polynomials
Pore-Scale Sand Layer
Sand
Simulation
Single-phase flow
title Modelling of Effective Permeability Coefficient Caused by the Formation of CO2 Hydrate in Sand Layer Using Pore-Scale Numerical Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Effective%20Permeability%20Coefficient%20Caused%20by%20the%20Formation%20of%20CO2%20Hydrate%20in%20Sand%20Layer%20Using%20Pore-Scale%20Numerical%20Simulations&rft.jtitle=Journal%20of%20MMIJ&rft.au=NONO,%20yumu&rft.date=2021-08-31&rft.volume=137&rft.issue=8&rft.spage=79&rft.epage=90&rft.pages=79-90&rft.issn=1881-6118&rft.eissn=1884-0450&rft_id=info:doi/10.2473/journalofmmij.137.79&rft_dat=%3Cproquest_jstag%3E2568305449%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568305449&rft_id=info:pmid/&rfr_iscdi=true