Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors
Modified MXene (Ti 3 C 2 Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D boron carbon nitride (BCN) nanosheets into three-dimensional 3D BCN microspheres that were obtained by tu...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-09, Vol.9 (34), p.1114-11114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11114 |
---|---|
container_issue | 34 |
container_start_page | 1114 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 9 |
creator | Tu, Dan Yang, Wenyao Li, Yi Zhou, Yujiu Shi, Liuwei Xu, Jianhua Yang, Yajie |
description | Modified MXene (Ti
3
C
2
Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D boron carbon nitride (BCN) nanosheets into three-dimensional 3D BCN microspheres that were obtained by tube furnace drying under N
2
flow and annealing. Then, the MXene/BCN microflowers were applied to all-solid-state flexible microsupercapacitors (MSCs) as a high-performance electrode material. It was found that the areal capacitance can reach up to 89 mF cm
−2
for a single MSC under 0.5 mA cm
−2
. Furthermore, the MSCs can achieve remarkable mechanical flexibility such that the capacitance will not be evidently decreased even after bending by up to 180°. In addition, 90.1% capacity retention was obtained even after 10 000 cycles and the highest energy density and power density reached 0.0124 mW h cm
−2
(volumetric energy density of approximately 17.7 mW h cm
−3
) and 3.1 mW cm
−2
(volumetric power density of approximately 4.5 W cm
−3
). These results demonstrate the synthesis of MXene/BCN composite materials with excellent power density and large scalability and can provide distinctive insights into high-performance flexible device storage systems.
Illustration of the preparation of the MXene/BCN electrode. Left panel: synthesis of MXene/BCN. Right panel: design of a versatile MXene/BCN electrode for printing, the 2D pattern (top row) and the three-electrode system (bottom row). |
doi_str_mv | 10.1039/d1tc02884g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2568224069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568224069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9739db106cfe246d9bc2b501ece3f796edaae420c5f3e654c3737b3be759af583</originalsourceid><addsrcrecordid>eNpF0M9LwzAUB_AgCo65i3eh4E2oy48mTY5a5xSmXiaIl5KmL9qRLTXpGP73dlbmu7x3-PB474vQOcHXBDM1rUlnMJUy-zhCI4o5TnPOsuPDTMUpmsS4wn1JIqRQI_S-_AwAad2sYRMbv9EueXqDDUxvi-dk3ZjgrfM7CDGxPiQ70EFXDhLtXBq9a-o0drqDQcZtC8HoVpum8yGeoROrXYTJXx-j1_vZsnhIFy_zx-JmkRoqSZeqnKm6IlgYCzQTtaoMrTgmYIDZXAmotYaMYsMtA8Ezw3KWV6yCnCttuWRjdDnsbYP_2kLsypXfhv6TWFIuJKUZFqpXV4PaHxoD2LINzVqH75Lgch9feUeWxW988x5fDDhEc3D_8bIfcxptaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568224069</pqid></control><display><type>article</type><title>Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tu, Dan ; Yang, Wenyao ; Li, Yi ; Zhou, Yujiu ; Shi, Liuwei ; Xu, Jianhua ; Yang, Yajie</creator><creatorcontrib>Tu, Dan ; Yang, Wenyao ; Li, Yi ; Zhou, Yujiu ; Shi, Liuwei ; Xu, Jianhua ; Yang, Yajie</creatorcontrib><description>Modified MXene (Ti
3
C
2
Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D boron carbon nitride (BCN) nanosheets into three-dimensional 3D BCN microspheres that were obtained by tube furnace drying under N
2
flow and annealing. Then, the MXene/BCN microflowers were applied to all-solid-state flexible microsupercapacitors (MSCs) as a high-performance electrode material. It was found that the areal capacitance can reach up to 89 mF cm
−2
for a single MSC under 0.5 mA cm
−2
. Furthermore, the MSCs can achieve remarkable mechanical flexibility such that the capacitance will not be evidently decreased even after bending by up to 180°. In addition, 90.1% capacity retention was obtained even after 10 000 cycles and the highest energy density and power density reached 0.0124 mW h cm
−2
(volumetric energy density of approximately 17.7 mW h cm
−3
) and 3.1 mW cm
−2
(volumetric power density of approximately 4.5 W cm
−3
). These results demonstrate the synthesis of MXene/BCN composite materials with excellent power density and large scalability and can provide distinctive insights into high-performance flexible device storage systems.
Illustration of the preparation of the MXene/BCN electrode. Left panel: synthesis of MXene/BCN. Right panel: design of a versatile MXene/BCN electrode for printing, the 2D pattern (top row) and the three-electrode system (bottom row).</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc02884g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing furnaces ; Capacitance ; Carbon nitride ; Composite materials ; Electrode materials ; Energy storage ; Flux density ; Microspheres ; MXenes ; Solid state ; Storage systems ; Tube furnaces ; Wearable technology</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-09, Vol.9 (34), p.1114-11114</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-9739db106cfe246d9bc2b501ece3f796edaae420c5f3e654c3737b3be759af583</citedby><cites>FETCH-LOGICAL-c281t-9739db106cfe246d9bc2b501ece3f796edaae420c5f3e654c3737b3be759af583</cites><orcidid>0000-0001-7507-6075 ; 0000-0001-6466-3848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tu, Dan</creatorcontrib><creatorcontrib>Yang, Wenyao</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Yujiu</creatorcontrib><creatorcontrib>Shi, Liuwei</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Yang, Yajie</creatorcontrib><title>Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Modified MXene (Ti
3
C
2
Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D boron carbon nitride (BCN) nanosheets into three-dimensional 3D BCN microspheres that were obtained by tube furnace drying under N
2
flow and annealing. Then, the MXene/BCN microflowers were applied to all-solid-state flexible microsupercapacitors (MSCs) as a high-performance electrode material. It was found that the areal capacitance can reach up to 89 mF cm
−2
for a single MSC under 0.5 mA cm
−2
. Furthermore, the MSCs can achieve remarkable mechanical flexibility such that the capacitance will not be evidently decreased even after bending by up to 180°. In addition, 90.1% capacity retention was obtained even after 10 000 cycles and the highest energy density and power density reached 0.0124 mW h cm
−2
(volumetric energy density of approximately 17.7 mW h cm
−3
) and 3.1 mW cm
−2
(volumetric power density of approximately 4.5 W cm
−3
). These results demonstrate the synthesis of MXene/BCN composite materials with excellent power density and large scalability and can provide distinctive insights into high-performance flexible device storage systems.
Illustration of the preparation of the MXene/BCN electrode. Left panel: synthesis of MXene/BCN. Right panel: design of a versatile MXene/BCN electrode for printing, the 2D pattern (top row) and the three-electrode system (bottom row).</description><subject>Annealing furnaces</subject><subject>Capacitance</subject><subject>Carbon nitride</subject><subject>Composite materials</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Microspheres</subject><subject>MXenes</subject><subject>Solid state</subject><subject>Storage systems</subject><subject>Tube furnaces</subject><subject>Wearable technology</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0M9LwzAUB_AgCo65i3eh4E2oy48mTY5a5xSmXiaIl5KmL9qRLTXpGP73dlbmu7x3-PB474vQOcHXBDM1rUlnMJUy-zhCI4o5TnPOsuPDTMUpmsS4wn1JIqRQI_S-_AwAad2sYRMbv9EueXqDDUxvi-dk3ZjgrfM7CDGxPiQ70EFXDhLtXBq9a-o0drqDQcZtC8HoVpum8yGeoROrXYTJXx-j1_vZsnhIFy_zx-JmkRoqSZeqnKm6IlgYCzQTtaoMrTgmYIDZXAmotYaMYsMtA8Ezw3KWV6yCnCttuWRjdDnsbYP_2kLsypXfhv6TWFIuJKUZFqpXV4PaHxoD2LINzVqH75Lgch9feUeWxW988x5fDDhEc3D_8bIfcxptaw</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Tu, Dan</creator><creator>Yang, Wenyao</creator><creator>Li, Yi</creator><creator>Zhou, Yujiu</creator><creator>Shi, Liuwei</creator><creator>Xu, Jianhua</creator><creator>Yang, Yajie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7507-6075</orcidid><orcidid>https://orcid.org/0000-0001-6466-3848</orcidid></search><sort><creationdate>20210914</creationdate><title>Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors</title><author>Tu, Dan ; Yang, Wenyao ; Li, Yi ; Zhou, Yujiu ; Shi, Liuwei ; Xu, Jianhua ; Yang, Yajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9739db106cfe246d9bc2b501ece3f796edaae420c5f3e654c3737b3be759af583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing furnaces</topic><topic>Capacitance</topic><topic>Carbon nitride</topic><topic>Composite materials</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Microspheres</topic><topic>MXenes</topic><topic>Solid state</topic><topic>Storage systems</topic><topic>Tube furnaces</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Dan</creatorcontrib><creatorcontrib>Yang, Wenyao</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhou, Yujiu</creatorcontrib><creatorcontrib>Shi, Liuwei</creatorcontrib><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Yang, Yajie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Dan</au><au>Yang, Wenyao</au><au>Li, Yi</au><au>Zhou, Yujiu</au><au>Shi, Liuwei</au><au>Xu, Jianhua</au><au>Yang, Yajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-09-14</date><risdate>2021</risdate><volume>9</volume><issue>34</issue><spage>1114</spage><epage>11114</epage><pages>1114-11114</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Modified MXene (Ti
3
C
2
Tx) is attractive as a flexible electrode for wearable energy storage devices. In this work, a convenient and effective method was proposed to change the conventional 2D boron carbon nitride (BCN) nanosheets into three-dimensional 3D BCN microspheres that were obtained by tube furnace drying under N
2
flow and annealing. Then, the MXene/BCN microflowers were applied to all-solid-state flexible microsupercapacitors (MSCs) as a high-performance electrode material. It was found that the areal capacitance can reach up to 89 mF cm
−2
for a single MSC under 0.5 mA cm
−2
. Furthermore, the MSCs can achieve remarkable mechanical flexibility such that the capacitance will not be evidently decreased even after bending by up to 180°. In addition, 90.1% capacity retention was obtained even after 10 000 cycles and the highest energy density and power density reached 0.0124 mW h cm
−2
(volumetric energy density of approximately 17.7 mW h cm
−3
) and 3.1 mW cm
−2
(volumetric power density of approximately 4.5 W cm
−3
). These results demonstrate the synthesis of MXene/BCN composite materials with excellent power density and large scalability and can provide distinctive insights into high-performance flexible device storage systems.
Illustration of the preparation of the MXene/BCN electrode. Left panel: synthesis of MXene/BCN. Right panel: design of a versatile MXene/BCN electrode for printing, the 2D pattern (top row) and the three-electrode system (bottom row).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc02884g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7507-6075</orcidid><orcidid>https://orcid.org/0000-0001-6466-3848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-09, Vol.9 (34), p.1114-11114 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2568224069 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Annealing furnaces Capacitance Carbon nitride Composite materials Electrode materials Energy storage Flux density Microspheres MXenes Solid state Storage systems Tube furnaces Wearable technology |
title | Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20MXene/BCN%20microflowers%20for%20wearable%20all-solid-state%20microsupercapacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Tu,%20Dan&rft.date=2021-09-14&rft.volume=9&rft.issue=34&rft.spage=1114&rft.epage=11114&rft.pages=1114-11114&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc02884g&rft_dat=%3Cproquest_rsc_p%3E2568224069%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568224069&rft_id=info:pmid/&rfr_iscdi=true |