Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure
Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased s...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-09, Vol.11 (33), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 33 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Stiber, Svenja Balzer, Harald Wierhake, Astrid Wirkert, Florian Josef Roth, Jeffrey Rost, Ulrich Brodmann, Michael Lee, Jason Keonhag Bazylak, Aimy Waiblinger, Wendelin Gago, Aldo Sau Friedrich, Kaspar Andreas |
description | Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure.
Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables. |
doi_str_mv | 10.1002/aenm.202100630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568144144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568144144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhisEEtPYlXMkrutImvTrOJXxIQ3YYTtXaetCpzYpTiroP-Bnk2loHLEs2Zae15Zfz7tmdMEoDW4lqG4R0MANEadn3oRFTPhRIuj5qefBpTczZk9diJRRzife90ajHgzZolSm12jJWo6AhtQayQa11Yqsvsp3qd6APENXOA7IqoXSom5H0xiyUxWggyxCByTTqmpso5UhuibZgAjKkjtQprHjnGyh6wGlHRDmRKrK3QBj3HTlXdSyNTD7rVNvd7_aZo_--vXhKVuu_ZKHMfXDkMWxqCsRhUlCReg-FEkJccKFLErOoppDQtOEg3D_BWEVp1VRRDELaFVAkfKpd3Pc26P-GMDYfK8HVO5kHrhtTAiXjlocqRK1MQh13mPTSRxzRvOD4fnB8PxkuBOkR8Fn08L4D50vVy_Pf9of44mFTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568144144</pqid></control><display><type>article</type><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</creator><creatorcontrib>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</creatorcontrib><description>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure.
Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100630</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Clean energy ; Current density ; Electrolysis ; Finite element method ; high current density ; high pressure ; high temperature ; Mass transport ; Membranes ; PEM electrolysis ; porous transport layers ; Protons ; Sintering (powder metallurgy) ; Water management</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (33), p.n/a</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</citedby><cites>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</cites><orcidid>0000-0002-8537-6589 ; 0000-0001-7000-171X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100630$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100630$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Stiber, Svenja</creatorcontrib><creatorcontrib>Balzer, Harald</creatorcontrib><creatorcontrib>Wierhake, Astrid</creatorcontrib><creatorcontrib>Wirkert, Florian Josef</creatorcontrib><creatorcontrib>Roth, Jeffrey</creatorcontrib><creatorcontrib>Rost, Ulrich</creatorcontrib><creatorcontrib>Brodmann, Michael</creatorcontrib><creatorcontrib>Lee, Jason Keonhag</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><creatorcontrib>Waiblinger, Wendelin</creatorcontrib><creatorcontrib>Gago, Aldo Sau</creatorcontrib><creatorcontrib>Friedrich, Kaspar Andreas</creatorcontrib><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><title>Advanced energy materials</title><description>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure.
Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</description><subject>Clean energy</subject><subject>Current density</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>high current density</subject><subject>high pressure</subject><subject>high temperature</subject><subject>Mass transport</subject><subject>Membranes</subject><subject>PEM electrolysis</subject><subject>porous transport layers</subject><subject>Protons</subject><subject>Sintering (powder metallurgy)</subject><subject>Water management</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PwzAMhisEEtPYlXMkrutImvTrOJXxIQ3YYTtXaetCpzYpTiroP-Bnk2loHLEs2Zae15Zfz7tmdMEoDW4lqG4R0MANEadn3oRFTPhRIuj5qefBpTczZk9diJRRzife90ajHgzZolSm12jJWo6AhtQayQa11Yqsvsp3qd6APENXOA7IqoXSom5H0xiyUxWggyxCByTTqmpso5UhuibZgAjKkjtQprHjnGyh6wGlHRDmRKrK3QBj3HTlXdSyNTD7rVNvd7_aZo_--vXhKVuu_ZKHMfXDkMWxqCsRhUlCReg-FEkJccKFLErOoppDQtOEg3D_BWEVp1VRRDELaFVAkfKpd3Pc26P-GMDYfK8HVO5kHrhtTAiXjlocqRK1MQh13mPTSRxzRvOD4fnB8PxkuBOkR8Fn08L4D50vVy_Pf9of44mFTQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Stiber, Svenja</creator><creator>Balzer, Harald</creator><creator>Wierhake, Astrid</creator><creator>Wirkert, Florian Josef</creator><creator>Roth, Jeffrey</creator><creator>Rost, Ulrich</creator><creator>Brodmann, Michael</creator><creator>Lee, Jason Keonhag</creator><creator>Bazylak, Aimy</creator><creator>Waiblinger, Wendelin</creator><creator>Gago, Aldo Sau</creator><creator>Friedrich, Kaspar Andreas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8537-6589</orcidid><orcidid>https://orcid.org/0000-0001-7000-171X</orcidid></search><sort><creationdate>20210901</creationdate><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><author>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clean energy</topic><topic>Current density</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>high current density</topic><topic>high pressure</topic><topic>high temperature</topic><topic>Mass transport</topic><topic>Membranes</topic><topic>PEM electrolysis</topic><topic>porous transport layers</topic><topic>Protons</topic><topic>Sintering (powder metallurgy)</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiber, Svenja</creatorcontrib><creatorcontrib>Balzer, Harald</creatorcontrib><creatorcontrib>Wierhake, Astrid</creatorcontrib><creatorcontrib>Wirkert, Florian Josef</creatorcontrib><creatorcontrib>Roth, Jeffrey</creatorcontrib><creatorcontrib>Rost, Ulrich</creatorcontrib><creatorcontrib>Brodmann, Michael</creatorcontrib><creatorcontrib>Lee, Jason Keonhag</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><creatorcontrib>Waiblinger, Wendelin</creatorcontrib><creatorcontrib>Gago, Aldo Sau</creatorcontrib><creatorcontrib>Friedrich, Kaspar Andreas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiber, Svenja</au><au>Balzer, Harald</au><au>Wierhake, Astrid</au><au>Wirkert, Florian Josef</au><au>Roth, Jeffrey</au><au>Rost, Ulrich</au><au>Brodmann, Michael</au><au>Lee, Jason Keonhag</au><au>Bazylak, Aimy</au><au>Waiblinger, Wendelin</au><au>Gago, Aldo Sau</au><au>Friedrich, Kaspar Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>33</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure.
Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100630</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8537-6589</orcidid><orcidid>https://orcid.org/0000-0001-7000-171X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-09, Vol.11 (33), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2568144144 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Clean energy Current density Electrolysis Finite element method high current density high pressure high temperature Mass transport Membranes PEM electrolysis porous transport layers Protons Sintering (powder metallurgy) Water management |
title | Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Transport%20Layers%20for%20Proton%20Exchange%20Membrane%20Electrolysis%20Under%20Extreme%20Conditions%20of%20Current%20Density,%20Temperature,%20and%20Pressure&rft.jtitle=Advanced%20energy%20materials&rft.au=Stiber,%20Svenja&rft.date=2021-09-01&rft.volume=11&rft.issue=33&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100630&rft_dat=%3Cproquest_cross%3E2568144144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568144144&rft_id=info:pmid/&rfr_iscdi=true |