Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure

Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-09, Vol.11 (33), p.n/a
Hauptverfasser: Stiber, Svenja, Balzer, Harald, Wierhake, Astrid, Wirkert, Florian Josef, Roth, Jeffrey, Rost, Ulrich, Brodmann, Michael, Lee, Jason Keonhag, Bazylak, Aimy, Waiblinger, Wendelin, Gago, Aldo Sau, Friedrich, Kaspar Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page
container_title Advanced energy materials
container_volume 11
creator Stiber, Svenja
Balzer, Harald
Wierhake, Astrid
Wirkert, Florian Josef
Roth, Jeffrey
Rost, Ulrich
Brodmann, Michael
Lee, Jason Keonhag
Bazylak, Aimy
Waiblinger, Wendelin
Gago, Aldo Sau
Friedrich, Kaspar Andreas
description Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure. Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.
doi_str_mv 10.1002/aenm.202100630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568144144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568144144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhisEEtPYlXMkrutImvTrOJXxIQ3YYTtXaetCpzYpTiroP-Bnk2loHLEs2Zae15Zfz7tmdMEoDW4lqG4R0MANEadn3oRFTPhRIuj5qefBpTczZk9diJRRzife90ajHgzZolSm12jJWo6AhtQayQa11Yqsvsp3qd6APENXOA7IqoXSom5H0xiyUxWggyxCByTTqmpso5UhuibZgAjKkjtQprHjnGyh6wGlHRDmRKrK3QBj3HTlXdSyNTD7rVNvd7_aZo_--vXhKVuu_ZKHMfXDkMWxqCsRhUlCReg-FEkJccKFLErOoppDQtOEg3D_BWEVp1VRRDELaFVAkfKpd3Pc26P-GMDYfK8HVO5kHrhtTAiXjlocqRK1MQh13mPTSRxzRvOD4fnB8PxkuBOkR8Fn08L4D50vVy_Pf9of44mFTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568144144</pqid></control><display><type>article</type><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</creator><creatorcontrib>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</creatorcontrib><description>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure. Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202100630</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Clean energy ; Current density ; Electrolysis ; Finite element method ; high current density ; high pressure ; high temperature ; Mass transport ; Membranes ; PEM electrolysis ; porous transport layers ; Protons ; Sintering (powder metallurgy) ; Water management</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (33), p.n/a</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</citedby><cites>FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</cites><orcidid>0000-0002-8537-6589 ; 0000-0001-7000-171X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202100630$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202100630$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Stiber, Svenja</creatorcontrib><creatorcontrib>Balzer, Harald</creatorcontrib><creatorcontrib>Wierhake, Astrid</creatorcontrib><creatorcontrib>Wirkert, Florian Josef</creatorcontrib><creatorcontrib>Roth, Jeffrey</creatorcontrib><creatorcontrib>Rost, Ulrich</creatorcontrib><creatorcontrib>Brodmann, Michael</creatorcontrib><creatorcontrib>Lee, Jason Keonhag</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><creatorcontrib>Waiblinger, Wendelin</creatorcontrib><creatorcontrib>Gago, Aldo Sau</creatorcontrib><creatorcontrib>Friedrich, Kaspar Andreas</creatorcontrib><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><title>Advanced energy materials</title><description>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure. Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</description><subject>Clean energy</subject><subject>Current density</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>high current density</subject><subject>high pressure</subject><subject>high temperature</subject><subject>Mass transport</subject><subject>Membranes</subject><subject>PEM electrolysis</subject><subject>porous transport layers</subject><subject>Protons</subject><subject>Sintering (powder metallurgy)</subject><subject>Water management</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PwzAMhisEEtPYlXMkrutImvTrOJXxIQ3YYTtXaetCpzYpTiroP-Bnk2loHLEs2Zae15Zfz7tmdMEoDW4lqG4R0MANEadn3oRFTPhRIuj5qefBpTczZk9diJRRzife90ajHgzZolSm12jJWo6AhtQayQa11Yqsvsp3qd6APENXOA7IqoXSom5H0xiyUxWggyxCByTTqmpso5UhuibZgAjKkjtQprHjnGyh6wGlHRDmRKrK3QBj3HTlXdSyNTD7rVNvd7_aZo_--vXhKVuu_ZKHMfXDkMWxqCsRhUlCReg-FEkJccKFLErOoppDQtOEg3D_BWEVp1VRRDELaFVAkfKpd3Pc26P-GMDYfK8HVO5kHrhtTAiXjlocqRK1MQh13mPTSRxzRvOD4fnB8PxkuBOkR8Fn08L4D50vVy_Pf9of44mFTQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Stiber, Svenja</creator><creator>Balzer, Harald</creator><creator>Wierhake, Astrid</creator><creator>Wirkert, Florian Josef</creator><creator>Roth, Jeffrey</creator><creator>Rost, Ulrich</creator><creator>Brodmann, Michael</creator><creator>Lee, Jason Keonhag</creator><creator>Bazylak, Aimy</creator><creator>Waiblinger, Wendelin</creator><creator>Gago, Aldo Sau</creator><creator>Friedrich, Kaspar Andreas</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8537-6589</orcidid><orcidid>https://orcid.org/0000-0001-7000-171X</orcidid></search><sort><creationdate>20210901</creationdate><title>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</title><author>Stiber, Svenja ; Balzer, Harald ; Wierhake, Astrid ; Wirkert, Florian Josef ; Roth, Jeffrey ; Rost, Ulrich ; Brodmann, Michael ; Lee, Jason Keonhag ; Bazylak, Aimy ; Waiblinger, Wendelin ; Gago, Aldo Sau ; Friedrich, Kaspar Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-551774fd4658804568448ce7834abc316f3e80983e403325d79dbb67120dbeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clean energy</topic><topic>Current density</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>high current density</topic><topic>high pressure</topic><topic>high temperature</topic><topic>Mass transport</topic><topic>Membranes</topic><topic>PEM electrolysis</topic><topic>porous transport layers</topic><topic>Protons</topic><topic>Sintering (powder metallurgy)</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiber, Svenja</creatorcontrib><creatorcontrib>Balzer, Harald</creatorcontrib><creatorcontrib>Wierhake, Astrid</creatorcontrib><creatorcontrib>Wirkert, Florian Josef</creatorcontrib><creatorcontrib>Roth, Jeffrey</creatorcontrib><creatorcontrib>Rost, Ulrich</creatorcontrib><creatorcontrib>Brodmann, Michael</creatorcontrib><creatorcontrib>Lee, Jason Keonhag</creatorcontrib><creatorcontrib>Bazylak, Aimy</creatorcontrib><creatorcontrib>Waiblinger, Wendelin</creatorcontrib><creatorcontrib>Gago, Aldo Sau</creatorcontrib><creatorcontrib>Friedrich, Kaspar Andreas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiber, Svenja</au><au>Balzer, Harald</au><au>Wierhake, Astrid</au><au>Wirkert, Florian Josef</au><au>Roth, Jeffrey</au><au>Rost, Ulrich</au><au>Brodmann, Michael</au><au>Lee, Jason Keonhag</au><au>Bazylak, Aimy</au><au>Waiblinger, Wendelin</au><au>Gago, Aldo Sau</au><au>Friedrich, Kaspar Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>33</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Hydrogen produced via water electrolysis powered by renewable electricity or green H2 offers new decarbonization pathways. Proton exchange membrane water electrolysis (PEMWE) is a promising technology although the current density, temperature, and H2 pressure of the PEMWE will have to be increased substantially to curtail the cost of green H2. Here, a porous transport layer for PEMWE is reported, that enables operation at up to 6 A cm−2, 90 °C, and 90 bar H2 output pressure. It consists of a Ti porous sintered layer (PSL) on a low‐cost Ti mesh (PSL/mesh‐PTL) by diffusion bonding. This novel approach does not require a flow field in the bipolar plate. When using the mesh‐PTL without PSL, the cell potential increases significantly due to mass transport losses reaching ca. 2.5 V at 2 A cm−2 and 90 °C. On the other hand, the PEMWE with the PSL/mesh‐PTL has the same cell potential but at 6 A cm−2, thus increasing substantially the operation range of the electrolyzer. Extensive physical characterization and pore network simulation demonstrate that the PSL/mesh‐PTL leads to efficient gas/water management in the PEMWE. Finally, the PSL/mesh‐PTL is validated in an industrial size PEMWE in a container operating at 90 bar H2 output pressure. Novel porous transport layers for proton exchange membrane water electrolyzers are reported that allow operation at extreme conditions of current density, temperature, and pressure. The electrolyzer is thus far more efficient than the state of art, resulting in lowering of the cost of hydrogen produced by renewables.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202100630</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8537-6589</orcidid><orcidid>https://orcid.org/0000-0001-7000-171X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-09, Vol.11 (33), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2568144144
source Wiley Online Library Journals Frontfile Complete
subjects Clean energy
Current density
Electrolysis
Finite element method
high current density
high pressure
high temperature
Mass transport
Membranes
PEM electrolysis
porous transport layers
Protons
Sintering (powder metallurgy)
Water management
title Porous Transport Layers for Proton Exchange Membrane Electrolysis Under Extreme Conditions of Current Density, Temperature, and Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Transport%20Layers%20for%20Proton%20Exchange%20Membrane%20Electrolysis%20Under%20Extreme%20Conditions%20of%20Current%20Density,%20Temperature,%20and%20Pressure&rft.jtitle=Advanced%20energy%20materials&rft.au=Stiber,%20Svenja&rft.date=2021-09-01&rft.volume=11&rft.issue=33&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202100630&rft_dat=%3Cproquest_cross%3E2568144144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568144144&rft_id=info:pmid/&rfr_iscdi=true