k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs
Batik is a famous name of a traditional fabric from Java. It has been admitted as one if the traditional cultural heritage of Indonesia by UNESCO since October 2nd, 2009. Over the time, Batik is copied and modified by many regions in Indonesia resulting some new unique motifs. Batik Lampung is an sa...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2019-10, Vol.1338 (1), p.12061 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12061 |
container_title | Journal of physics. Conference series |
container_volume | 1338 |
creator | Andrian, R Naufal, M A Hermanto, B Junaidi, A Lumbanraja, F R |
description | Batik is a famous name of a traditional fabric from Java. It has been admitted as one if the traditional cultural heritage of Indonesia by UNESCO since October 2nd, 2009. Over the time, Batik is copied and modified by many regions in Indonesia resulting some new unique motifs. Batik Lampung is an sample of them. This paper deals with the k-Nearest Neighbor classification of the motifs (pattern) of the Batik Lampung. The known motifs of Batik Lampung consist of Jung Agung, Siger Kembang Cengkih, Siger Ratu Agung, and Sembagi. The original image samples are stored in RGB. They are firstly resized into 50 x 50 pixels and then converted to grayscale image. To recognize them, the Gray Level Co-Occurence Matrix (GLCM) feature is extracted and k-Nearest Neighbor (k-NN) with values of k = 3, 5, 7, 9, 11 and orientation angle of 00 450, 900, 1350 is applied to classify the motifs. The best accuracy is achieved at the rate 97,96% for k = 7 and angle1350. |
doi_str_mv | 10.1088/1742-6596/1338/1/012061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568047989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568047989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3281-eba418663bbb314d9ebca6c1561cade0ee8fe8e33cad41335c3ce497e7ce09f53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3EIkLIIXaceI4R4h4qhQE5Ww57rp1Xw52euDvcQgqQkJiL97xzOxqB6Fjgi8I5nxA8jSJWVawAaE0wAEmCWZkB_W2zO6253wfHXg_x5iGyntovIhHIB34JhqBmc4q66LT8Dc6i8ql9N5oo2Rj7DrSgXkBZadr84WtjpoZRFeBXURDuao362n0aBuj_SHa03Lp4ej77aO3m-txeRcPn27vy8thrGjCSQyVTAlnjFZVRUk6KaBSkimSMaLkBDAA18CB0oDScFymqIK0yCFXgAud0T466ebWzr5vwg1ibjduHVaKJGMcp3nBi6DKO5Vy1nsHWtTOrKT7EASLNkLRhiPaoEQboSCiizA4aec0tv4Z_b_r_A_Xw3P5-lso6ommnx_WgGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568047989</pqid></control><display><type>article</type><title>k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Andrian, R ; Naufal, M A ; Hermanto, B ; Junaidi, A ; Lumbanraja, F R</creator><creatorcontrib>Andrian, R ; Naufal, M A ; Hermanto, B ; Junaidi, A ; Lumbanraja, F R</creatorcontrib><description>Batik is a famous name of a traditional fabric from Java. It has been admitted as one if the traditional cultural heritage of Indonesia by UNESCO since October 2nd, 2009. Over the time, Batik is copied and modified by many regions in Indonesia resulting some new unique motifs. Batik Lampung is an sample of them. This paper deals with the k-Nearest Neighbor classification of the motifs (pattern) of the Batik Lampung. The known motifs of Batik Lampung consist of Jung Agung, Siger Kembang Cengkih, Siger Ratu Agung, and Sembagi. The original image samples are stored in RGB. They are firstly resized into 50 x 50 pixels and then converted to grayscale image. To recognize them, the Gray Level Co-Occurence Matrix (GLCM) feature is extracted and k-Nearest Neighbor (k-NN) with values of k = 3, 5, 7, 9, 11 and orientation angle of 00 450, 900, 1350 is applied to classify the motifs. The best accuracy is achieved at the rate 97,96% for k = 7 and angle1350.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1338/1/012061</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; Cultural heritage ; Cultural resources ; Feature extraction ; Physics</subject><ispartof>Journal of physics. Conference series, 2019-10, Vol.1338 (1), p.12061</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3281-eba418663bbb314d9ebca6c1561cade0ee8fe8e33cad41335c3ce497e7ce09f53</citedby><cites>FETCH-LOGICAL-c3281-eba418663bbb314d9ebca6c1561cade0ee8fe8e33cad41335c3ce497e7ce09f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1338/1/012061/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Andrian, R</creatorcontrib><creatorcontrib>Naufal, M A</creatorcontrib><creatorcontrib>Hermanto, B</creatorcontrib><creatorcontrib>Junaidi, A</creatorcontrib><creatorcontrib>Lumbanraja, F R</creatorcontrib><title>k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Batik is a famous name of a traditional fabric from Java. It has been admitted as one if the traditional cultural heritage of Indonesia by UNESCO since October 2nd, 2009. Over the time, Batik is copied and modified by many regions in Indonesia resulting some new unique motifs. Batik Lampung is an sample of them. This paper deals with the k-Nearest Neighbor classification of the motifs (pattern) of the Batik Lampung. The known motifs of Batik Lampung consist of Jung Agung, Siger Kembang Cengkih, Siger Ratu Agung, and Sembagi. The original image samples are stored in RGB. They are firstly resized into 50 x 50 pixels and then converted to grayscale image. To recognize them, the Gray Level Co-Occurence Matrix (GLCM) feature is extracted and k-Nearest Neighbor (k-NN) with values of k = 3, 5, 7, 9, 11 and orientation angle of 00 450, 900, 1350 is applied to classify the motifs. The best accuracy is achieved at the rate 97,96% for k = 7 and angle1350.</description><subject>Classification</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Feature extraction</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFUMtOwzAQtBBIlMI3EIkLIIXaceI4R4h4qhQE5Ww57rp1Xw52euDvcQgqQkJiL97xzOxqB6Fjgi8I5nxA8jSJWVawAaE0wAEmCWZkB_W2zO6253wfHXg_x5iGyntovIhHIB34JhqBmc4q66LT8Dc6i8ql9N5oo2Rj7DrSgXkBZadr84WtjpoZRFeBXURDuao362n0aBuj_SHa03Lp4ej77aO3m-txeRcPn27vy8thrGjCSQyVTAlnjFZVRUk6KaBSkimSMaLkBDAA18CB0oDScFymqIK0yCFXgAud0T466ebWzr5vwg1ibjduHVaKJGMcp3nBi6DKO5Vy1nsHWtTOrKT7EASLNkLRhiPaoEQboSCiizA4aec0tv4Z_b_r_A_Xw3P5-lso6ommnx_WgGE</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Andrian, R</creator><creator>Naufal, M A</creator><creator>Hermanto, B</creator><creator>Junaidi, A</creator><creator>Lumbanraja, F R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20191001</creationdate><title>k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs</title><author>Andrian, R ; Naufal, M A ; Hermanto, B ; Junaidi, A ; Lumbanraja, F R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3281-eba418663bbb314d9ebca6c1561cade0ee8fe8e33cad41335c3ce497e7ce09f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classification</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Feature extraction</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrian, R</creatorcontrib><creatorcontrib>Naufal, M A</creatorcontrib><creatorcontrib>Hermanto, B</creatorcontrib><creatorcontrib>Junaidi, A</creatorcontrib><creatorcontrib>Lumbanraja, F R</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrian, R</au><au>Naufal, M A</au><au>Hermanto, B</au><au>Junaidi, A</au><au>Lumbanraja, F R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>1338</volume><issue>1</issue><spage>12061</spage><pages>12061-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Batik is a famous name of a traditional fabric from Java. It has been admitted as one if the traditional cultural heritage of Indonesia by UNESCO since October 2nd, 2009. Over the time, Batik is copied and modified by many regions in Indonesia resulting some new unique motifs. Batik Lampung is an sample of them. This paper deals with the k-Nearest Neighbor classification of the motifs (pattern) of the Batik Lampung. The known motifs of Batik Lampung consist of Jung Agung, Siger Kembang Cengkih, Siger Ratu Agung, and Sembagi. The original image samples are stored in RGB. They are firstly resized into 50 x 50 pixels and then converted to grayscale image. To recognize them, the Gray Level Co-Occurence Matrix (GLCM) feature is extracted and k-Nearest Neighbor (k-NN) with values of k = 3, 5, 7, 9, 11 and orientation angle of 00 450, 900, 1350 is applied to classify the motifs. The best accuracy is achieved at the rate 97,96% for k = 7 and angle1350.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1338/1/012061</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-10, Vol.1338 (1), p.12061 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2568047989 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Classification Cultural heritage Cultural resources Feature extraction Physics |
title | k-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=k-Nearest%20Neighbor%20(k-NN)%20Classification%20for%20Recognition%20of%20the%20Batik%20Lampung%20Motifs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Andrian,%20R&rft.date=2019-10-01&rft.volume=1338&rft.issue=1&rft.spage=12061&rft.pages=12061-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1338/1/012061&rft_dat=%3Cproquest_cross%3E2568047989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568047989&rft_id=info:pmid/&rfr_iscdi=true |