Effect and identification of parametric distributed uncertainties in longitudinal wave propagation
•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the mat...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2021-10, Vol.98, p.498-517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | |
container_start_page | 498 |
container_title | Applied Mathematical Modelling |
container_volume | 98 |
creator | Machado, M.R. Dos Santos, J.M.C. |
description | •Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation.
Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters. |
doi_str_mv | 10.1016/j.apm.2021.05.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568031571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X21002638</els_id><sourcerecordid>2568031571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAc9fM7qbdxZOU-gEFLwrewmwyKVna3TXJVvz3ptaDJ-cyM_C-8_Ewdg0iAwHz2zbDYZflIodMyExAdcImohCLWS3K99M_9Tm7CKEVQsjUTVizspZ05NgZ7gx10VmnMbq-473lA3rcUfROc-NCys0YyfCx0-QjuqSmwF3Ht323cXE0rsMt_8Q98cH3A25-Bl2yM4vbQFe_ecreHlavy6fZ-uXxeXm_nulcyjijGrS1gBVgegg0FALyFGgQAOra1GCgRqp1KWnRUN4UKEpTSaqNLa0ppuzmODft_hgpRNX2o08XBZXLeSUKkAtIKjiqtO9D8GTV4N0O_ZcCoQ4oVasSSnVAqYRUCWXy3B09lM7fO_IqaEcJgnE-wVOmd_-4vwH9Zn5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568031571</pqid></control><display><type>article</type><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><source>Education Source (EBSCOhost)</source><source>Elsevier ScienceDirect Journals</source><source>Business Source Complete</source><creator>Machado, M.R. ; Dos Santos, J.M.C.</creator><creatorcontrib>Machado, M.R. ; Dos Santos, J.M.C.</creatorcontrib><description>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation.
Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2021.05.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Fields (mathematics) ; Frequency ranges ; Longitudinal waves ; Love rod theory ; Material properties ; Numerical models ; Parameters ; Propagation ; Randomness ; SLS 3D Printer distributed random property ; Spectra ; Spectral element method ; Stochastic processes ; Stochastic spectral element ; Uncertainty ; Variability identification ; Vibration analysis ; Wave propagation ; Waveguides ; WKB Approximation</subject><ispartof>Applied Mathematical Modelling, 2021-10, Vol.98, p.498-517</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</citedby><cites>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2021.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Machado, M.R.</creatorcontrib><creatorcontrib>Dos Santos, J.M.C.</creatorcontrib><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><title>Applied Mathematical Modelling</title><description>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation.
Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</description><subject>Fields (mathematics)</subject><subject>Frequency ranges</subject><subject>Longitudinal waves</subject><subject>Love rod theory</subject><subject>Material properties</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Randomness</subject><subject>SLS 3D Printer distributed random property</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Stochastic processes</subject><subject>Stochastic spectral element</subject><subject>Uncertainty</subject><subject>Variability identification</subject><subject>Vibration analysis</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>WKB Approximation</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAc9fM7qbdxZOU-gEFLwrewmwyKVna3TXJVvz3ptaDJ-cyM_C-8_Ewdg0iAwHz2zbDYZflIodMyExAdcImohCLWS3K99M_9Tm7CKEVQsjUTVizspZ05NgZ7gx10VmnMbq-473lA3rcUfROc-NCys0YyfCx0-QjuqSmwF3Ht323cXE0rsMt_8Q98cH3A25-Bl2yM4vbQFe_ecreHlavy6fZ-uXxeXm_nulcyjijGrS1gBVgegg0FALyFGgQAOra1GCgRqp1KWnRUN4UKEpTSaqNLa0ppuzmODft_hgpRNX2o08XBZXLeSUKkAtIKjiqtO9D8GTV4N0O_ZcCoQ4oVasSSnVAqYRUCWXy3B09lM7fO_IqaEcJgnE-wVOmd_-4vwH9Zn5M</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Machado, M.R.</creator><creator>Dos Santos, J.M.C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202110</creationdate><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><author>Machado, M.R. ; Dos Santos, J.M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fields (mathematics)</topic><topic>Frequency ranges</topic><topic>Longitudinal waves</topic><topic>Love rod theory</topic><topic>Material properties</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Randomness</topic><topic>SLS 3D Printer distributed random property</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Stochastic processes</topic><topic>Stochastic spectral element</topic><topic>Uncertainty</topic><topic>Variability identification</topic><topic>Vibration analysis</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>WKB Approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, M.R.</creatorcontrib><creatorcontrib>Dos Santos, J.M.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, M.R.</au><au>Dos Santos, J.M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-10</date><risdate>2021</risdate><volume>98</volume><spage>498</spage><epage>517</epage><pages>498-517</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation.
Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2021.05.018</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2021-10, Vol.98, p.498-517 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_2568031571 |
source | Education Source (EBSCOhost); Elsevier ScienceDirect Journals; Business Source Complete |
subjects | Fields (mathematics) Frequency ranges Longitudinal waves Love rod theory Material properties Numerical models Parameters Propagation Randomness SLS 3D Printer distributed random property Spectra Spectral element method Stochastic processes Stochastic spectral element Uncertainty Variability identification Vibration analysis Wave propagation Waveguides WKB Approximation |
title | Effect and identification of parametric distributed uncertainties in longitudinal wave propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20and%20identification%20of%20parametric%20distributed%20uncertainties%20in%20longitudinal%20wave%20propagation&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Machado,%20M.R.&rft.date=2021-10&rft.volume=98&rft.spage=498&rft.epage=517&rft.pages=498-517&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2021.05.018&rft_dat=%3Cproquest_cross%3E2568031571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568031571&rft_id=info:pmid/&rft_els_id=S0307904X21002638&rfr_iscdi=true |