Effect and identification of parametric distributed uncertainties in longitudinal wave propagation

•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2021-10, Vol.98, p.498-517
Hauptverfasser: Machado, M.R., Dos Santos, J.M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue
container_start_page 498
container_title Applied Mathematical Modelling
container_volume 98
creator Machado, M.R.
Dos Santos, J.M.C.
description •Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation. Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.
doi_str_mv 10.1016/j.apm.2021.05.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2568031571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X21002638</els_id><sourcerecordid>2568031571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvAc9fM7qbdxZOU-gEFLwrewmwyKVna3TXJVvz3ptaDJ-cyM_C-8_Ewdg0iAwHz2zbDYZflIodMyExAdcImohCLWS3K99M_9Tm7CKEVQsjUTVizspZ05NgZ7gx10VmnMbq-473lA3rcUfROc-NCys0YyfCx0-QjuqSmwF3Ht323cXE0rsMt_8Q98cH3A25-Bl2yM4vbQFe_ecreHlavy6fZ-uXxeXm_nulcyjijGrS1gBVgegg0FALyFGgQAOra1GCgRqp1KWnRUN4UKEpTSaqNLa0ppuzmODft_hgpRNX2o08XBZXLeSUKkAtIKjiqtO9D8GTV4N0O_ZcCoQ4oVasSSnVAqYRUCWXy3B09lM7fO_IqaEcJgnE-wVOmd_-4vwH9Zn5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568031571</pqid></control><display><type>article</type><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><source>Education Source (EBSCOhost)</source><source>Elsevier ScienceDirect Journals</source><source>Business Source Complete</source><creator>Machado, M.R. ; Dos Santos, J.M.C.</creator><creatorcontrib>Machado, M.R. ; Dos Santos, J.M.C.</creatorcontrib><description>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation. Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2021.05.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Fields (mathematics) ; Frequency ranges ; Longitudinal waves ; Love rod theory ; Material properties ; Numerical models ; Parameters ; Propagation ; Randomness ; SLS 3D Printer distributed random property ; Spectra ; Spectral element method ; Stochastic processes ; Stochastic spectral element ; Uncertainty ; Variability identification ; Vibration analysis ; Wave propagation ; Waveguides ; WKB Approximation</subject><ispartof>Applied Mathematical Modelling, 2021-10, Vol.98, p.498-517</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</citedby><cites>FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2021.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Machado, M.R.</creatorcontrib><creatorcontrib>Dos Santos, J.M.C.</creatorcontrib><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><title>Applied Mathematical Modelling</title><description>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation. Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</description><subject>Fields (mathematics)</subject><subject>Frequency ranges</subject><subject>Longitudinal waves</subject><subject>Love rod theory</subject><subject>Material properties</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Randomness</subject><subject>SLS 3D Printer distributed random property</subject><subject>Spectra</subject><subject>Spectral element method</subject><subject>Stochastic processes</subject><subject>Stochastic spectral element</subject><subject>Uncertainty</subject><subject>Variability identification</subject><subject>Vibration analysis</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>WKB Approximation</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvAc9fM7qbdxZOU-gEFLwrewmwyKVna3TXJVvz3ptaDJ-cyM_C-8_Ewdg0iAwHz2zbDYZflIodMyExAdcImohCLWS3K99M_9Tm7CKEVQsjUTVizspZ05NgZ7gx10VmnMbq-473lA3rcUfROc-NCys0YyfCx0-QjuqSmwF3Ht323cXE0rsMt_8Q98cH3A25-Bl2yM4vbQFe_ecreHlavy6fZ-uXxeXm_nulcyjijGrS1gBVgegg0FALyFGgQAOra1GCgRqp1KWnRUN4UKEpTSaqNLa0ppuzmODft_hgpRNX2o08XBZXLeSUKkAtIKjiqtO9D8GTV4N0O_ZcCoQ4oVasSSnVAqYRUCWXy3B09lM7fO_IqaEcJgnE-wVOmd_-4vwH9Zn5M</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Machado, M.R.</creator><creator>Dos Santos, J.M.C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202110</creationdate><title>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</title><author>Machado, M.R. ; Dos Santos, J.M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-e91cff1a81a0161c13012222ada11199d91d19ae9c45e7be2b3a04d85e9df4fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fields (mathematics)</topic><topic>Frequency ranges</topic><topic>Longitudinal waves</topic><topic>Love rod theory</topic><topic>Material properties</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Randomness</topic><topic>SLS 3D Printer distributed random property</topic><topic>Spectra</topic><topic>Spectral element method</topic><topic>Stochastic processes</topic><topic>Stochastic spectral element</topic><topic>Uncertainty</topic><topic>Variability identification</topic><topic>Vibration analysis</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>WKB Approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machado, M.R.</creatorcontrib><creatorcontrib>Dos Santos, J.M.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machado, M.R.</au><au>Dos Santos, J.M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect and identification of parametric distributed uncertainties in longitudinal wave propagation</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2021-10</date><risdate>2021</risdate><volume>98</volume><spage>498</spage><epage>517</epage><pages>498-517</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Stochastic spectral Love element formulation, including spatial variability along its length.•Pulse-echo analysis demonstrating the effect of the spatially distributed material properties in wave propagation through a rod.•Identification and quantification of internal wave reflection due to the material variabilities using the WKB approximation.•Changing rate based identification of parametric variability performed using WKB approximation. Uncertainties play an important role in dynamic systems regarding their vibration and wave propagation behaviour. Stochastic methods have been used to address the randomness incorporated in numerical models. The spectral element method (SEM) is suitable to perform vibration and wave propagation analysis based on large frequency ranges with accuracy and low computational cost. This paper explores the longitudinal wave propagation considering uncertainties in the media aside from demonstrating and quantifying the effect of randomness inherent in the material. The stochastic Love rod spectral elements are proposed, and the parameters were assumed to be spatially distributed alongside the structure expressed as a random field. It is expanded using the Karhunen-Loève spectral decomposition and memoryless transformation. The Wentzel-Kramers-Brillouin (WKB) approximation is a powerful tool to evaluate local impedance changes slowly. It is used to indicate and quantify a changing rate related to material properties varying along the rod. Numerical examples analyse wave propagation in a longitudinal waveguide with distributed parameters.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2021.05.018</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2021-10, Vol.98, p.498-517
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2568031571
source Education Source (EBSCOhost); Elsevier ScienceDirect Journals; Business Source Complete
subjects Fields (mathematics)
Frequency ranges
Longitudinal waves
Love rod theory
Material properties
Numerical models
Parameters
Propagation
Randomness
SLS 3D Printer distributed random property
Spectra
Spectral element method
Stochastic processes
Stochastic spectral element
Uncertainty
Variability identification
Vibration analysis
Wave propagation
Waveguides
WKB Approximation
title Effect and identification of parametric distributed uncertainties in longitudinal wave propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20and%20identification%20of%20parametric%20distributed%20uncertainties%20in%20longitudinal%20wave%20propagation&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Machado,%20M.R.&rft.date=2021-10&rft.volume=98&rft.spage=498&rft.epage=517&rft.pages=498-517&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2021.05.018&rft_dat=%3Cproquest_cross%3E2568031571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568031571&rft_id=info:pmid/&rft_els_id=S0307904X21002638&rfr_iscdi=true